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1. Chiral symmetry and low lying Dirac eigenvalues

For fermionic models, the chiral condensate — (/) represents the order parameter, which
indicates if chiral symmetry is intact or broken. The laitethe case at finite fermion mass but
in the chiral limitm — 0 both scenarios are possible:

e The chiral symmetry breaking could persis{m = 0) > 0. This is the familiar situation of
low temperature QCD, where chiral flavour symmetry breakmtmeously at zero quark
masses.

e The scenario witlE(m = 0) = 0 occurs for instance in high temperature QCD. At low tem-
perature, multi-flavour variants of QCD are candidates Ricbnformal theories with this
property. However, the question whether or not IR confoityiakts in for instance afs = 8
or 12 flavours is highly controversial; for a review, see REf.

Here the low lying Dirac eigenvaluek do not form a Banks-Casher plateau. Instead, an
obvious ansatz for their densip(A) near zero is a power law (with constastsr)

p(A)=cV[A]?, a=1/d. (1.1)

In the followingV represents the space-time volume. On the other hand, iradeaf high
temperaturey means only the spatial volume, since there are no smallyaaishing) Dirac
eigenvalues in the direction of Euclidean time.

The second scenario is also expected for the Schwinger iQ&# in two dimensions) with
Nt > 2 flavours. In the continuum and large volume, A. Smilga datithe analytic result [2]

_Nf+1
CNf—1°

smom°, & (1.2)
Here we focus oiN; = 2.

In the framework of this scenario, there is an interestingecture that the low lying eigenval-
ues could be decorrelated and thus follow a Poisson disisihuBased on this assumption, T.G.
Kovacs derived an explicit formula for the densities of thading eigenvalues [3]. The iteration of
his formula yields, for the" (non-zero) eigenvalue, the density

(cv)"

) = @ st

n(a+1)—1 o cv a+1
A exp( e, ) (1.3)

2. The Schwinger moddl with N¢ = 2 light fermions

A refined analysis [4] revealed that the critical expon@miff the Nt = 2 Schwinger model —
in anL x L volume, with gauge coupling— actually depends on the Hetrick-Hosotani-Iso (HHI)
parametet,

m >1 : 0=3
I::W\/2L3g { . (2.1)

<1l : o6=1

Hence eq. (1.2) refers to the limit> 1, wheread <« 1 corresponds to the spectrum of free
fermions, withp(A) O A9-1[5].
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If one performs lattice simulations, the paramédt@ between these extreme cases, and it is
difficult to attain the behaviour of tHe> 1 limit — to the best of our knowledge, such results have
not appeared yet.

We simulated this model with dynamical chiral fermions (mprecisely: with overlap hyper-
cube fermions [6, 7]) with two flavours of degenerate masandf = 1/g° = 5 [8]. This yields
a mean plaquette value close t®0which implies that lattice artifacts are small. On theeoth
hand, finite size effects may be significant in aux L volumes,L = 16...32. Table 1 displays the
corresponding HHI parameter for the two fermion masses lamdinallest and largest sikehat
we are going to consider.

| | L=16 | L=32

m=0.01| 1=0455|1=1286
m=0.06 | 1=2728|1=7715

Table 1: The HHI parametel of eq. (2.1) for two fermion massesand lattices sizek, at3 = 5.

3. Decorrelation of small Dirac eigenvalues ?

The overlap Dirac operator that we used is constructed fronR@ improvedhypercubic
kernelwith a mass parameterl (in lattice units) [7, 8]. Thus the (massless) Dirac speutis
located on a unit circle in the complex plane with centre 1r deonparison with the continuum
formula, we map the eigenvalues stereographically ontoea éis described in Ref. [9]. In order to
test the compatibility with the density (1.3), we considEd][the corresponding cumulative density
(in contrast to a histogram, this does not require the chafi@m bin size),

A
Ra(7) :/0 A pa(A) (3.1)

for a fixed sizeL. and massn, in some topological sector (the topological charge isfified with
the fermion indexv). We fit the Poisson behaviour (1.3) to the measured cumaldgénsities by
tuning the free parametecsanda. Figure 1 shows that these fits work very well.

Next we consider the volume dependence of the mean vahgeq10]. We perform fits of
the Kovécs distribution (1.3) to these mean values at 0.01, in volumes/ = 16%...32%. Figure
2 shows that also these fits work quite well. The plot on theilletrates the/-dependence of
(A1) in the sectottv| = 1; the fit (bold line) matches the data in four volumes pradifovithin the
errors. The plot on the right extends this consideration 1. ..4: all four eigenvalues in four
volumes are captured well by adjusting the two parametargla in the ansatz (1.1).

So far this seems to confirm that our microscopic Dirac speate compatible with the decor-
relation property. However, each fit in Figure 1 was perfairbg tuning the two free parameters
independently. In Figure 2 they were adjusted again, nowd@kpected volume dependence. The
consistency condition is that the values of these paraseteruld be compatible, in particular the
(dimensionless) exponent

This isnotthe case: the values required for these fits vary betweeb8)3) and 808(5) (and
the coefficient even varies from @9(3) to 2.7(2) - 10*) [10]. For a graphical illustration, the plot
on the left of Figure 2 also shows lines for the parameterwhish were chosen in Figure 1 for
the detailed distribution in each volume. We see that thiess lare far from the mean values in
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Figure 1: Cumulative Dirac eigenvalue densitiesnat= 0.01, and the fitted Kovacs distributions (1.3). We
show above the leading eigenvalue in the topologicallynaaéctor ¢ = 0) and lattice sizek = 16, 20, 32.
Below we refer td_ = 16 and include the leading three non-zero eigenvalues isgb@rgv| = 0 and 1.
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Figure 2: The volume dependence of the mean val(fg$. The plot on the left (right) shows the data for
(A1) (for (A1)...{A4)) in four volumes, which agree quite well with tvedependent Kovécs distributions
(1.3), if we fit the free parameters andc. However, the values of the fit parameters differ strongiyrfr
those required in Figure 1, which adjust the detailed distion in one volume. These parameter sets
correspond to the four finer lines in the plot on the left.
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distinct volumes. Therefore, the agreement cannot be ocoediy although it is amazing that the
single fits work so well.

As a compelling test, we now focus on the distribution oftinéolded level spacings(a/hich
is describeck.g.in Refs. [8, 9]). We saw in Ref. [8] that the entire Dirac spewat follows very
precisely the behaviour, which was predicted for the Chilgitary Ensemble (ChUE) [11]

Pchue(S) = 32(7—ST)2exp(—4sz/n) , (3.2)

just like QCD in thes-regime [9]. On the other hand, Ref. [12] observed in highgerature QCD
with 2+ 1 flavours a transition to a Poisson distributigsissodS) = exp(—s), if one only includes
low lying eigenvalues.

Hence we test specifically the unfolded level spacing dgifsitthe lowest two Dirac eigen-
values of each configuration [10]. Figure 3 shows the regoitten = 0.01, v = 0 andL = 16 (on
the left), L = 32 (on the right). In both cases our data are close to the Chi\eecbut far from
the Poisson distribution. This is most obvioud_at 16, where more statistics is included (2428
configurations), whild. = 32 (with 138 configurations) probes smaller eigenvalues.
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Figure 3: The unfolded level spacing distributionsrat= 0.01, in the topological sectar = 0, for the
lowest two Dirac eigenvalues at= 16 (on the left) and. = 32 (on the right). In both cases, our data are
compatible with the distribution of a Chiral Unitary Ensdmlbut not with a Poisson distribution.

4. Mass anomalous dimension

At last we also take a look at the evaluation of the mass armmalimensioryy,. This can be
done in various ways; here we follow the procedure which vezsiun Ref. [13]. As suggested in
Ref. [14], it employs thenode numbefthe cumulative eigenvalue density, up to the normalisatio

y e()\)—v/A A p(r) = Y2 qan (4.1)
mod — 4 p — a+ 1 .
as a tool to evaluate the mass anomalous dimension
d
4.2)

Vm()\):m—l
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We are most interested in iR limit,

V= 2" Y(A) . (4.3)

Figure 4 shows thes, values (which are obtained by averaging over a small infefea
fermion massesn = 0.01 and 006, in a variety of volumes. In both cases, the data are well
compatible with a quadratic fit, which leads to very similgrdxtrapolations,

m=0.01 : y,=0.0655), m=0.06 : y,=0.0637). (4.4)

The consistency between these two masses suggests wiattitiis value in the chiral extrapolation
m — 0, and in the large volume extrapolatibn— . (Moreover, lattice artifacts are expected to
be small, as we mentioned before.)
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Figure 4: Evaluation of the mass anomalous dimensjiarbased on the mode numb&foqd(A ) at fermion
massm = 0.01 (on the left) anan = 0.06 (on the right). The data for both masses lead to very sirtila
limits, which are given in eq. (4.4).

However, this apparently convincing picture is questid@abince the results foy;, depend
significantly on the energy interval that we rely on for théragolation. Fits to the detailed distri-
butions of the lowest few eigenvalues ohlgad toa ~ 3/5 [8], which corresponds tg, ~ 1/4.
That value is just between the extreme limits of the HHI paetam

l<1l = y,=0, I>1 = y=1/2, (4.5)

which could be sensible regarding Table 1. In Figure 4 werrefénigher energies, so we are
dealing with Dirac eigenvalues closer to the bulk. The gpoading IR extrapolation approaches
the non-anomalous valyg, = 0 of free fermions.

5. Conclusions

We have considered the 2-flavour Schwinger model as a simptédnic theory with a vanish-
ing chiral condensate in the chiral limE({m= 0) = 0. We started from the hypothesis that in such
theories the low lying Dirac eigenvalues could be decoteelaand therefore Poisson distributed.

IThis is similar to the method applied in Ref. [15].
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In fact, this feature had been confirmed for fermiond ia 4, interacting through Yang-Mills gauge
fields at high temperature [3, 12]. However, we could not eonthis property for the 2-flavour
Schwinger model. Single fits to the predicted propertieskwemarkably well — in particular
for the density of a specific low eigenvalue — but these fitsiiregparameters, which are clearly
inconsistent. Moreover, we saw that the unfolded level isigadistribution for the two lowest
eigenvalues of each configuration is close to the form of thigaCUnitary Ensemble, but far from
a Poisson distribution; this coincides with the featurehef éntire spectrum.

These observations favoumaodified hypothesisthe predicted eigenvalue decorrelation oc-
curs ifZ(m= 0) vanishes due to high temperature, but not when this happentd large number
of flavours. In fact, Ref. [16] associates the inverse teipee with the localisation scale for small
Dirac eigenvalues, which is fully consistent with this nfaetl hypothesis.

Regarding the mass anomalous dimensigrwe found an apparently stable IR extrapolation
¥, based on ther, values obtained through the mode number in a moderate apesgime [10].
However, this result disagrees with fits obtained in the asicopic regime of the lowest Dirac
eigenvalues [8]. This underscores once more gt a tricky quantity: different methods may
provide apparently convincing values, which still diffggrsficantly. In fact, this is reflected by the
recent literature on possibly IR conformal 4d fermionic relsdseee.g.Refs. [13, 17]), which is
currently one of the most controversial issues in the itemmunity.
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