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Fermionic theories with a vanishing chiral condensate (in the chiral limit) have recently attracted

considerable interest; in particular variants of multi-flavour QCD are candidates for this be-

haviour. Here we consider the 2-flavour Schwinger model as a simple theory with this property.

Based on simulations with light dynamical overlap fermions, we test the hypothesis that in such

models the low lying Dirac eigenvalues could be decorrelated. That has been observed in 4d

Yang-Mills theories at high temperature, but it cannot be confirmed for the 2-flavour Schwinger

model. We also discuss subtleties in the evaluation of the mass anomalous dimension and its IR

extrapolation.
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1. Chiral symmetry and low lying Dirac eigenvalues

For fermionic models, the chiral condensateΣ=−〈ψ̄ψ〉 represents the order parameter, which
indicates if chiral symmetry is intact or broken. The latteris the case at finite fermion massm, but
in the chiral limitm→ 0 both scenarios are possible:

• The chiral symmetry breaking could persist,Σ(m= 0) > 0. This is the familiar situation of
low temperature QCD, where chiral flavour symmetry breaks spontaneously at zero quark
masses.

• The scenario withΣ(m= 0) = 0 occurs for instance in high temperature QCD. At low tem-
perature, multi-flavour variants of QCD are candidates for IR conformal theories with this
property. However, the question whether or not IR conformality sets in for instance atNf = 8
or 12 flavours is highly controversial; for a review, see Ref.[1].

Here the low lying Dirac eigenvaluesλ do not form a Banks-Casher plateau. Instead, an
obvious ansatz for their densityρ(λ ) near zero is a power law (with constantsc, α)

ρ(λ ) = cV|λ |α , α = 1/δ . (1.1)

In the followingV represents the space-time volume. On the other hand, in the case of high
temperature,V means only the spatial volume, since there are no small (non-vanishing) Dirac
eigenvalues in the direction of Euclidean time.

The second scenario is also expected for the Schwinger model(QED in two dimensions) with
Nf ≥ 2 flavours. In the continuum and large volume, A. Smilga derived the analytic result [2]

Σ(m) ∝ m1/δ , δ =
Nf +1
Nf −1

. (1.2)

Here we focus onNf = 2.
In the framework of this scenario, there is an interesting conjecture that the low lying eigenval-

ues could be decorrelated and thus follow a Poisson distribution. Based on this assumption, T.G.
Kovács derived an explicit formula for the densities of the leading eigenvalues [3]. The iteration of
his formula yields, for thenth (non-zero) eigenvalue, the density

ρn(λ ) =
(cV)n

(n−1)! (α +1)n−1 λ n(α+1)−1 exp
(

−
cV

α +1
λ α+1

)

. (1.3)

2. The Schwinger model with Nf = 2 light fermions

A refined analysis [4] revealed that the critical exponentδ of theNf = 2 Schwinger model —
in anL×L volume, with gauge couplingg — actually depends on the Hetrick-Hosotani-Iso (HHI)
parameterl ,

l :=
m

π1/4

√

2L3g

{

≫ 1 : δ = 3
≪ 1 : δ = 1

. (2.1)

Hence eq. (1.2) refers to the limitl ≫ 1, whereasl ≪ 1 corresponds to the spectrum of free
fermions, withρ(λ ) ∝ λ d−1 [5].
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If one performs lattice simulations, the parameterl is between these extreme cases, and it is
difficult to attain the behaviour of thel ≫ 1 limit — to the best of our knowledge, such results have
not appeared yet.

We simulated this model with dynamical chiral fermions (more precisely: with overlap hyper-
cube fermions [6, 7]) with two flavours of degenerate massm, andβ = 1/g2 = 5 [8]. This yields
a mean plaquette value close to 0.9, which implies that lattice artifacts are small. On the other
hand, finite size effects may be significant in ourL×L volumes,L = 16. . .32. Table 1 displays the
corresponding HHI parameter for the two fermion masses and the smallest and largest sizeL that
we are going to consider.

L = 16 L = 32

m= 0.01 l = 0.455 l = 1.286
m= 0.06 l = 2.728 l = 7.715

Table 1: The HHI parameterl of eq. (2.1) for two fermion massesm and lattices sizesL, atβ = 5.

3. Decorrelation of small Dirac eigenvalues ?

The overlap Dirac operator that we used is constructed from an RG improvedhypercubic
kernelwith a mass parameter−1 (in lattice units) [7, 8]. Thus the (massless) Dirac spectrum is
located on a unit circle in the complex plane with centre 1. For comparison with the continuum
formula, we map the eigenvalues stereographically onto a line, as described in Ref. [9]. In order to
test the compatibility with the density (1.3), we consider [10] the corresponding cumulative density
(in contrast to a histogram, this does not require the choiceof an bin size),

Rn(λ ) =
∫ λ

0
dλ ′ ρn(λ ′) , (3.1)

for a fixed sizeL and massm, in some topological sector (the topological charge is identified with
the fermion indexν). We fit the Poisson behaviour (1.3) to the measured cumulative densities by
tuning the free parametersc andα . Figure 1 shows that these fits work very well.

Next we consider the volume dependence of the mean values〈λn〉 [10]. We perform fits of
the Kovács distribution (1.3) to these mean values atm= 0.01, in volumesV = 162 . . .322. Figure
2 shows that also these fits work quite well. The plot on the left illustrates theV-dependence of
〈λ1〉 in the sector|ν |= 1; the fit (bold line) matches the data in four volumes practically within the
errors. The plot on the right extends this consideration ton = 1. . .4: all four eigenvalues in four
volumes are captured well by adjusting the two parametersc andα in the ansatz (1.1).

So far this seems to confirm that our microscopic Dirac spectra are compatible with the decor-
relation property. However, each fit in Figure 1 was performed by tuning the two free parameters
independently. In Figure 2 they were adjusted again, now to the expected volume dependence. The
consistency condition is that the values of these parameters should be compatible, in particular the
(dimensionless) exponentα .

This isnot the case: theα values required for these fits vary between 0.58(3) and 8.08(5) (and
the coefficientc even varies from 0.09(3) to 2.7(2) ·104) [10]. For a graphical illustration, the plot
on the left of Figure 2 also shows lines for the parameter setswhich were chosen in Figure 1 for
the detailed distribution in each volume. We see that these lines are far from the mean values in
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Figure 1: Cumulative Dirac eigenvalue densities atm= 0.01, and the fitted Kovács distributions (1.3). We
show above the leading eigenvalue in the topologically neutral sector (ν = 0) and lattice sizesL= 16, 20, 32.
Below we refer toL = 16 and include the leading three non-zero eigenvalues in thesectors|ν|= 0 and 1.
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Figure 2: The volume dependence of the mean values〈λn〉. The plot on the left (right) shows the data for
〈λ1〉 (for 〈λ1〉 . . . 〈λ4〉 ) in four volumes, which agree quite well with theV dependent Kovács distributions
(1.3), if we fit the free parametersα andc. However, the values of the fit parameters differ strongly from
those required in Figure 1, which adjust the detailed distribution in one volume. These parameter sets
correspond to the four finer lines in the plot on the left.
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distinct volumes. Therefore, the agreement cannot be confirmed, although it is amazing that the
single fits work so well.

As a compelling test, we now focus on the distribution of theunfolded level spacings s(which
is describede.g. in Refs. [8, 9]). We saw in Ref. [8] that the entire Dirac spectrum follows very
precisely the behaviour, which was predicted for the ChiralUnitary Ensemble (ChUE) [11]

ρChUE(s) = 32
( s

π

)2
exp(−4s2/π) , (3.2)

just like QCD in theε-regime [9]. On the other hand, Ref. [12] observed in high temperature QCD
with 2+1 flavours a transition to a Poisson distributionρPoisson(s) = exp(−s), if one only includes
low lying eigenvalues.

Hence we test specifically the unfolded level spacing density for the lowest two Dirac eigen-
values of each configuration [10]. Figure 3 shows the resultsfor m= 0.01, ν = 0 andL = 16 (on
the left), L = 32 (on the right). In both cases our data are close to the ChUE curve, but far from
the Poisson distribution. This is most obvious atL = 16, where more statistics is included (2428
configurations), whileL = 32 (with 138 configurations) probes smaller eigenvalues.
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Figure 3: The unfolded level spacing distributions atm= 0.01, in the topological sectorν = 0, for the
lowest two Dirac eigenvalues atL = 16 (on the left) andL = 32 (on the right). In both cases, our data are
compatible with the distribution of a Chiral Unitary Ensemble, but not with a Poisson distribution.

4. Mass anomalous dimension

At last we also take a look at the evaluation of the mass anomalous dimensionγm. This can be
done in various ways; here we follow the procedure which was used in Ref. [13]. As suggested in
Ref. [14], it employs themode number(the cumulative eigenvalue density, up to the normalisation)

νmode(λ ) =V
∫ λ

−λ
dλ ′ ρ(λ ′) =

2cV2

α +1
λ α+1 (4.1)

as a tool to evaluate the mass anomalous dimension

γm(λ ) =
d

α(λ )+1
−1 . (4.2)
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We are most interested in itsIR limit,

γ∗m = lim
λ→0 γm(λ ) . (4.3)

Figure 4 shows theγm values (which are obtained by averaging over a small interval) for
fermion massesm= 0.01 and 0.06, in a variety of volumes. In both cases, the data are well
compatible with a quadratic fit, which leads to very similar IR extrapolations,

m= 0.01 : γ∗m = 0.065(5) , m= 0.06 : γ∗m = 0.063(7) . (4.4)

The consistency between these two masses suggests stability of this value in the chiral extrapolation
m→ 0, and in the large volume extrapolationL → ∞. (Moreover, lattice artifacts are expected to
be small, as we mentioned before.)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  0.5  1  1.5  2

γ
m

λ

m = 0.01

L = 16
L = 20
L = 24
L = 28
L = 32

Fit
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  0.5  1  1.5  2

γ
m

λ

m = 0.06

L = 16
L = 32

Fit

Figure 4: Evaluation of the mass anomalous dimensionγm based on the mode numberνmode(λ ) at fermion
massm= 0.01 (on the left) andm= 0.06 (on the right). The data for both masses lead to very similar IR
limits, which are given in eq. (4.4).

However, this apparently convincing picture is questionable, since the results forγ∗m depend
significantly on the energy interval that we rely on for the extrapolation. Fits to the detailed distri-
butions of the lowest few eigenvalues only1 lead toα ≃ 3/5 [8], which corresponds toγ∗m ≃ 1/4.
That value is just between the extreme limits of the HHI parameter,

l ≪ 1 ⇒ γ∗m = 0 , l ≫ 1 ⇒ γ∗m = 1/2 , (4.5)

which could be sensible regarding Table 1. In Figure 4 we refer to higher energies, so we are
dealing with Dirac eigenvalues closer to the bulk. The corresponding IR extrapolation approaches
the non-anomalous valueγ∗m = 0 of free fermions.

5. Conclusions

We have considered the 2-flavour Schwinger model as a simple fermionic theory with a vanish-
ing chiral condensate in the chiral limit,Σ(m= 0) = 0. We started from the hypothesis that in such
theories the low lying Dirac eigenvalues could be decorrelated, and therefore Poisson distributed.

1This is similar to the method applied in Ref. [15].
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In fact, this feature had been confirmed for fermions ind= 4, interacting through Yang-Mills gauge
fields at high temperature [3, 12]. However, we could not confirm this property for the 2-flavour
Schwinger model. Single fits to the predicted properties work remarkably well — in particular
for the density of a specific low eigenvalue — but these fits require parameters, which are clearly
inconsistent. Moreover, we saw that the unfolded level spacing distribution for the two lowest
eigenvalues of each configuration is close to the form of the Chiral Unitary Ensemble, but far from
a Poisson distribution; this coincides with the feature of the entire spectrum.

These observations favour amodified hypothesis:the predicted eigenvalue decorrelation oc-
curs ifΣ(m= 0) vanishes due to high temperature, but not when this happens due to a large number
of flavours. In fact, Ref. [16] associates the inverse temperature with the localisation scale for small
Dirac eigenvalues, which is fully consistent with this modified hypothesis.

Regarding the mass anomalous dimensionγm, we found an apparently stable IR extrapolation
γ∗m based on theγm values obtained through the mode number in a moderate spectral regime [10].
However, this result disagrees with fits obtained in the microscopic regime of the lowest Dirac
eigenvalues [8]. This underscores once more thatγ∗m is a tricky quantity: different methods may
provide apparently convincing values, which still differ significantly. In fact, this is reflected by the
recent literature on possibly IR conformal 4d fermionic models (seee.g.Refs. [13, 17]), which is
currently one of the most controversial issues in the lattice community.
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