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We report lattice calculation of vacuum polarizatoion function (VPF) with N f = 2+ 1 domain-

wall fermions. In this calculation, by using the all-mode-averaging (AMA) techniques, the precise

lattice calculation of VPF is perfomed. By comparison with two cut-off scales, we estimate the

lattice discretization effect. Fitting VPF in high momentum region, using the operator product

expansion (OPE) and perturbative QCD, we obtain the more reliable estimate of strong coupling

constant, and furthermore quark condensate is also evaluated. On the other hand, in low momen-

tum region, we show that the lowest Pade approximation is in good agreement with precise VPFs

even at the lowest momentum point. This result encouranges for providing robust value of leading

order of hadronic contribution to muon g-2.
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1. Introduction

In this proceedings, we report on the progress of calculation of strong coupling constant and

the leading order of hadronic contribution (HLO) to muon g-2 from vacuum polarization function

(VPF). VPF as a function of Euclidean momentum squared, −q2 = Q2, can be extracted from

the two-point correlation function of vector current. VPF provides rich information for hadronic

contribution to low-energy physics and perturbative QCD.

The determination of Q2 dependence of VPFs is important to evaluate the non-perturbative

theoretical value of muon g-2 and the precise test of the Standard model (SM). On the other hand,

in high momentum regime, the operator product expansion (OPE) represents VPF as a pertubative

diagram of quark-gluon and the multi-dimensional operator condensate with inverse of power of

Q2. Non-perturbative comparison with lattice calculation is important task for the check of valid

regime of OPE formula and estimate of QCD scale ΛQCD.

Although there have been several attempts of lattice calculation of HLO muon g-2 [1, 2, 3, 4]

([5] and see references therein), the total uncertainty is more than 10 times larger than currently

phenomenological estimate from experimental data [6]. Especially the large statistical error in

low-Q2 is significant in this calculation, since the QED weight function around muon mass squared

(Q2 ≃ 0.01 GeV2) is much dominant in total Q2 integral. The reduction of statistical error of VPFs

is the first step for precise measurement of HLO muon g-2 on the lattice.

Comparing the Adler function to lattice VPF, we directly evaluate the renormalized strong

coupling constant αs in the MS scheme. As shown in Ref.[7, 8], the precise value of αMS
s is

obtained from the pure perturbative formula at 3-loop and the contribution of quark and gluon

condensate in OPE.

Here we show the preliminary results of these observables using the all-mode-averaging (AMA)

technique to drastically reduce the statistical error. In this study we use two cut-off ensembles,

243×64 at a−1 = 1.73 GeV and 323×64 at a−1 = 2.23 GeV, and estimate the systematic error due

to lattice discretization. Table 1 shows the details of simulation parameter. We obtain the Lanczos

method to compute the exact Nλ low-lying modes of even-odd preconditioned Hermitian Dirac

operator. In AMA, we employ relaxed CG solver with fixed CG iteration as approximation [9, 10].

Table 1: Lattice parameters in the simulation.Nλ means the number of low-lying mode we use in deflation

method of CG process, and NAMA
CG means the stopping iteration of relaxed CG in AMA. NG is the number of

source locations of approximation.

Lattice size a−1 GeV ms mud mπ (GeV) Nλ NG NAMA
CG Nconf

243 ×64 1.73 0.04 0.005 0.33 140 32 180 192

0.01 0.42 140 32 150 172

0.02 0.54 140 32 150 105

323 ×64 2.23 0.03 0.004 0.28 140 32 180 100

0.006 0.33 140 32 180 113

0.008 0.38 140 32 180 122
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2. Extraction of vacuum polarization function

In the continuum theory, the VPF is given by the expansion of vector two-point correlation

function in four-dimensional momentum representation,

i

∫

d4xeiqx〈T{V a
µ (x)V

b†
ν (0)}〉=−

(

qµqν −gµνq2
)

δ abΠcont
V (q2)≡ δ abΠcont

µν (q). (2.1)

The above equation is satisfied with charge conservation, qµΠcont
µν (q) = qνΠcont

µν (q) = 0 for vector

current V a
µ = q̄γµτaq. τ is SU(3) isospin generator matrix. For the computation of VPF in HLO

muon g-2, we adopt the electromagnetic current, V EM
µ (x) = q̄γµQeq, in which charge matrix for

light and strange quark is Qe = diag
(

2
3
,− 1

3
,− 1

3

)

. This is also described by the light and strange

quark propagators D−1
ud , D−1

s as

〈V EM
µ V EM

ν 〉(x) ≃ (e2
u + e2

d)〈V
ud
µ V ud

ν 〉c(x)+ e2
s 〈V

s
µV s

ν 〉c(x), (2.2)

where the above equation is used in the assumption of SU(3) isospin limit, in which there is no

contribution of disconnected diagram due to the cancellation eu + ed + es = 0.

In lattice QCD, we use the combination of conserved and local current of two-point correlation

function as well as used in [8, 3]. The local current V loc
µ is same form as continuum theory, however,

it is not satisfied with charge conservation. We multiply the renormalization constant ZV = 0.7178

which is computed non-perturbatively in Ref.[11]. The conserved current has the charge conser-

vation ∑µ Q̂µΠµν = 0, where we define Q̂µ = eiQµ − 1 = eiQµ/22isin(Qµ/2). To extract the VPF

from lattice vector two-point correlation function, we modify the expansion of Eq.(2.1) as

Π
q
µν(Q) = Π

q
V (Q)(Q̂µQ̂ν −δµνQ̂2)+O((aQ)6)

= Π
q
V (Q)

[

QµQν −
Q2

µQ2
ν

16
−δµν

(

Q2 −
Q4

16

)]

+O((aQ)6), (2.3)

where, in the last equation, we also expand Q̂µ with aQµ = 2πnµ/L. Below (aQ)2 = 0.7 region,

we ignore higher order contribution than O((aQ)6), which contains the lattice artifact due to using

non-conserved current in this formula. As shown in [8, 3], this effect is negligibly small in this

region. In practice, ΠV (Q) is obtained by fitting lattice data for different combination of Qµ at

each Q2 with function of Eq.(2.3).

Furthermore we exclude the momentum which has only finite value at one direction above

Q2 ≃ 0.2 GeV2 region, such as nexclude
µ =

{

(ni = 1,nt = 0), (ni = 0,nt = 3), (ni = 0,nt = 4), (ni =

2,nt = 0)
}

, except for (ni = 0,nt = 1) and (ni = 0,nt = 2) in the case of 243 × 64 at a−1 = 1.73

GeV, and (ni = 0,nt = 1) at a−1 = 2.23 GeV. As a consequence of the above subtraction, we can

conservatively avoid the lattice artifacts effect.

3. Estimate of strong coupling constant

The formula of OPE of vector VPF is expressed as

ΠV (Q
2) =

c

µ2a2
+C0(lµ(Q

2),αs)+CV
m(lµ(Q

2),αs)
m2

q

Q2
+CV

q̄q(lµ(Q
2),αs)

〈mq̄q〉

Q4

+ C
loop
q̄q (lµ(Q

2),αs)
∑ f 〈m f q̄q〉

Q4
+CGG(lµ(Q

2),αs)

〈

αs

π GG
〉

Q4
, (3.1)
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Table 2: Result of fitting lattice VPF with OPE formula.

Lattice a−1 GeV αs/π Λ
(3)

MS
(GeV) −〈qq̄〉

1/3

MS
(GeV) 〈αs

π GG〉 (GeV4) χ2/dof

243 ×64 1.73 0.08192(39) 0.2486(27) 0.276(11) 0.237(18) 1.8

0.08193(34) 0.2486(24) 0.256[fix] 0.205(3) 2.5

323 ×64 2.23 0.08317(85) 0.2572(58) 0.325(29) 0.741(138) 1.3

0.08196(28) 0.2489(19) 0.256[fix] 0.475(10) 2.7

a → 0 0.0844(20) 0.265(14) 0.390(68)

JLQCD[8] 1.83 0.0817(6) 0.247(5) 0.242[fix] -0.020(2) 2.8

where αs = αs(µ
2) and mq = mq(µ

2) at renormalization scale µ = 2 GeV. Note that we use the αs

and mass renormalization in MS scheme. The mass renormalization constant is determined non-

perturbatively as ZMS
m (µ = 2GeV) = 1.498 in 243 × 64 and ZMS

m (µ = 2GeV) = 1.527 in 323 × 64

in Ref.[11]. We also define lµ(Q
2) = ln(Q2/µ2). The first term and second term are scheme

dependence and pure QCD perturbation up to N3LO O(α2
s ) referring to [12, 13], The third term is

proportional to quark mass, which is derived from expansion with respect to m2
q, and here we use

3-loop formula referring to [14]. From the forth term, since these are sub-leading contribution to

VPF, we use the leading order of Wilson coefficient, CV
q̄q = 2, C

loop
q̄q = 0 and CGG = 1/12 [15, 13].

In this calculation, we use four free parameters in the fitting of VPF, which are c, αs, 〈qq̄〉MS

and 〈αs

π GG〉. We perform the simultaneous fitting for all quark mass in each cut-off scale. Figure 1

shows the VPF in our ensemble in the fitting Q2 region, 0.93 GeV2<Q2<1.8 GeV2. The accuracy

of VPF at each momentum is almost subpercent in this fitting region, which is improved by factor

10 and more compared to [8]. One sees that fitting function is in good agreement with our accurate

lattice data within 1σ statistical error, and thus it turns out that OPE formula up to N3LO in Eq.(3.1)

is able to precisely describe the q2 dependence of lattice result above Q2 = 0.9 GeV2.

In Table 2, we compare the lattice results obtained in this calculation and previous work on

JLQCD collaboration [8]. In Ref.[8], they have used the overlap fermion at relatively small volume

and one lattice spacing, and also the condensate is fixed in computed value in the others. The strong

coupling constant at µ = 2 GeV is consistent between our result and JLQCD, and our results are

around factor 1.5 improved for 243 lattice. The fitting result with free chiral condensate also makes

improvement of χ2/dof, and furthermore which is compatible with 0.256(6) [11] given from hadron

spectroscopy. It is also compatible between different cut-off results, and taking continuum limit for

αs and 〈qq̄〉 increases these values less than 5% for αs and 20–30% for quark condensate. We

notice that chiral condensate obtained by analysis in OPE formula is large over 1σ error, although

statistical and systematic errors are still large. It indicates that there is necessary to do more detailed

analysis of systematic uncertainties for 〈qq̄〉.

4. Fitting VPFs in the low-Q2 regime

In this section, we perform the analysis of VPF for estimate of HLO muon g-2, in which

the current correlator has quark charge matrix instead of SU(2) isospin generator. In this section,

4
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Figure 1: VPF in high-Q2 in 243×64 lattice (left) and 323×64 lattice (right). The different symbols denote

the lattice data at different masses. The solid lines denote the fitting function with OPE formula.

we use ΠEM as VPF from EM current correlator. First in Figure 2 we plot VPFs for light and

strange sector weighted by the quark charge, and these summantion. The amount of strange VPF

contribution is about 18% for total VPF, and this is due to the different factor of squared of quark

charge, e2
s/(e

2
u + e2

d) = 20%.

Here, in order to fit lattice VPF with continuous function of −q2 = Q2, we employ the follow-

ing function,

f (−q2) = a0 −Q2
( a1

b1 +Q2
+a2

)

, (4.1)

which has four sorts of unknown parameters, a0,a1,a2 and b1. a0 gives ΠEM(0) extrapolated into

−q2 = 0. This is similar construction as Pade approximation called “PA11” [4], however in our

fitting function, b1 is not any constrained. We set the fitting range as −q2 < 0.74 GeV2, where

is close to the minimum point for fitting with OPE as shown in previous section. In Figure 3 one

sees that the function in Eq.(4.1) is in agreement with lattice data even in the lowest −q2 point.

In table 3, we show the value of each fitting parameter. χ2/dof is less than 0.5, and accuracy of

ΠEM(0) is less than 5% statistical error. Note that, at m = 0.005 in 243 lattice, the fitting parameter

b1 is smaller than 4m2
π , which regards a cut of integral for spectral function in q2 > 0 axis. In Pade

approximation proposed in [4], they have taken such constraint. If we constraint b1 as b1 > 4m2
π , the

chi-squared fitting does not convergence reasonably. This result suggests that it is necessary to take

into account different fitting function from vector-dominance-like model which is assuming the

contribution of tail of vector meason pole in time-like q2 region. Currently we study the systematic

uncertainties of finite size effect and lattice artifacts in low q2 region under way.

For muon g-2 calculation of leading order of hadronic contribution, it is necessary to perform

the q2 integral with QED kernel [1, 16] for subtracted VPF

Π̂EM(−q2) = ΠEM(0)−ΠEM(−q2). (4.2)

We propose to divide the q2 integral into two parts as low q2 using Eq.(4.1) and high q2 using OPE

formula Eq.(3.1), and perform the numerical integral for ΠEM from [0,∞]. In Eq.(4.2), ΠEM(0) is

given from extrapolation to −q2 = 0 in low q2 fitting. Our preliminary result shows that its value

5
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Figure 2: VPF at m = 0.005 on 243 lattice. Different symbols are VPF at light quark (squared), strange

quark (diamond) and total (circle) respectively.
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Figure 3: VPF of EM current on 243 (left) and 323 (right) lattice as a function of −q2. The different symbols

are VPF in different light quark mass ensembles, and solid lines are fit function.

is roughly 1.6 times larger than previous analysis with same gauge ensemble in [3], although the

statistical error is 20–30% for m = 0.005 on 24 cube, and 10–15% for m = 0.004 on 32 cube. We

need to carefully compare our results with [3].

5. Summary

In this proceedings, we present the recent analysis of vector vacuum polarization function

(VPF) calculated in lattice QCD using domain-wall fermion. In this work, we adopt the new error

reduction technique, so called as All-mode-averaging (AMA), and thus the precise VPF is obtained.

For the calculation of strong coupling constant, αMS
s is given from OPE formula of vector VPF in

two different cut-offs, and so that the lattice artifact effect is also taken into account. On the other

hand, in low q2 regime, using the fitting function analogous to Pade approximation, this function is

6
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Table 3: Table of fitting parameters using the range of −q2 < 0.74 GeV2.

Lattice m a0 a1 b1 (GeV2) a2 (GeV−2) χ2/dof 4m2
π (GeV2)

243 ×64 0.005 0.1108(19) 0.0288(42) 0.258(111) 0.0164(35) 0.5 0.44

0.01 0.1040(4) 0.0466(30) 0.763(81) 0.0056(10) 0.1 0.71

0.02 0.0987(3) 0.0494(5) 1.023(53) 0.0033(2) 0.03 1.17

323 ×64 0.004 0.1278(15) 0.0323(11) 0.249(50) 0.0161(13) 0.04 0.31

0.006 0.1229(8) 0.0319(17) 0.347(53) 0.0137(12) 0.02 0.44

0.008 0.1187(5) 0.0366(38) 0.576(86) 0.0100(16) 0.2 0.58

in good agreement with the precise lattice VPF below −q2 = 0.74 GeV2. The systematic analysis

of heading order of hadronic contribution to muon g-2 is under way.
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