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1. Introduction

Most ideas aimed at solving confinement in SU(N) Yang-Mills theories involve topological
degrees of freedom of some sort. Among these, ZN center vortices have received much attention in
the literature in general and in lattice investigations in particular.

According to ’t Hooft’s original idea [1], since the gauge group of pure Yang-Mills SU(N)/ZN

posseses a non trivial first homotopy class corresponding to its center, π1(SU(N)/ZN) = ZN , a su-
perselection rule will arise for the physical Hilbert space of gauge invariant states [2], with sectors
labelled by a vortex topological index n ∈ ZN . The low temperature confinement phase will corre-
spond to a superposition of all topological sectors, while above the deconfinement transition vortex
symmetry gets broken to the trivial sector n = 0; the ’t Hooft loop H, dual to the Wilson loop W ,
is the natural observable to describe the transition, “counting” the number of topological vortices
piercing it. From H one can reconstruct the free energy for vortex creation, F = ∆U −T ∆S; the
monitoring of the F behaviour across the deconfinement transition has received broad attention in
the literature [3, 4, 5, 6, 7].

The natural choice to investigate F upon lattice discretization of Yang-Mills theories would
be to define the partition function through the adjoint Wilson action Z ∼ eβATrA(U); in this case all
topological sectors are dynamically included [8]. Universality should of course allow the equivalent
use of the standard Wilson plaquette action S ∼ TrF(U). In this case topology must however be
introduced “by hand” summing over all twisted boundary conditions1. The partition function Z̃
will then be defined through the weighted sum of partition functions with fixed twisted BC2. Since
each of them must be determined by independent simulations, their relative weights can only be
calculated through indirect means [4, 5, 9].

There is however a caveat in such argument. The two partition functions Z and Z̃ can only be
shown to be equivalent when ZN magnetic monopoles are absent [8, 10]. Taking the explicit case
of SU(2)/Z2 = SO(3), this translates into the constraint:

σc = ∏
P∈∂c

sign(TrF UP) = 1 (1.1)

being satisfied for every elementary 3-cube c, where UP denotes the plaquettes belonging to the
cube surface ∂c. This ensures that Z2 magnetic monopoles are suppressed and only closed Z2

center vortices winding around the boundaries are allowed.
The above condition is usually quoted when claiming that the bulk transition separating the

strong and weak coupling regime along βA [11, 12, 13, 14, 15] constitutes an obstacle in defining the
continuum limit for the adjoint Wilson action. This however assumes that topological sectors along
the fundamental coupling β are always well defined. We will show this not to be the case. Together
with a set of established results demonstrating that above the adjoint bulk transition topological
sectors are well defined and a physical continuum limit of the theory exists [6, 7, 16, 17, 18, 19, 20,
21, 22, 23], we can turn the argument around, casting doubts that investigations of vortex topology
for the fundamental Wilson are well defined. Preliminary results had been presented in Ref. [24].

1Such topological boundary conditions play a rôle in lattice investigations of string spectrum or large N reduction.
2See Ref. [9], Chapt. 3.
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2. Setup

We will investigate as a test case the SU(2) fundamental Wilson action with periodic BC:

S = β ∑
x,µ>ν

[1−TrF(Uµν(x)] (2.1)

in D = 2,3,4 dimensions. Different groups or BC can be considered as well and won’t change the
main results given below.

The twist operator, measuring the number of topological vortices piercing the ’t Hooft loop in
the µ,ν planes, can be constructed via [3]:

zµν =
1

LD−2 ∑
~ρ⊥µν

∏
x∈µ,νplane

sign(TrFUµν(x)) . (2.2)

If the topological sectors are well defined zµν should take values ±1 for fixed µ and ν ; e.g. in
the case at hand, i.e. periodic BC, the topological sector must be trivial and one should always
have zµν = 1 ∀µ,ν . It is now easy to define an order parameter z such that z = 1 if, whatever
the BC, the vortex topology takes the correct value expected in the continuum theory, while z = 0
when Z2 monopoles are still present and open Z2 center vortices dominate the vacuum, making the
identification of topological sectors ill defined at best:

z = 1−|z12−〈z12〉| D = 2 (2.3)

z =
2

D(D−1)

D

∑
µ>ν=1

〈|zµν |〉 D≥ 3 . (2.4)

3. Results

The D = 2 case offers an interesting cross-check of numerical results, since here everything
can be calculated analytically. For the order parameter z and its susceptibility χ we have, for fixed
volume V = L2:

〈z〉L = e−4L2 p(β ) ; χL = L2
[
e−4L2 p(β )− e−8L2 p(β )

]
(3.1)

p(β ) =
1
2

[
1− L1(β )

I1(β )

]
'
√

2β

π
e−β (1+O(

1
β
)) , (3.2)

where L and I denote the modified Struve and Bessel functions, respectively. Plotting the above
functions (see Fig. (1)) we can clearly distinguish a “strong” coupling regime, where the topol-
ogy is ill defined, and a “weak” coupling one, where z takes the correct value it should have in
the continuum theory. The finite size scaling analysis can be performed exactly, giving for the
susceptibility peaks and the corresponding pseudo-critical coupling:

βc(L) = lnL2 +
1
2

ln lnL2 +O(1) ; χL(βc(L)) =
L2

4
. (3.3)

From the above equation it is easy to extract the critical behaviour of the correlation lenght around
the critical coupling βc = ∞, including logarithmic corrections:

ξ ∼ 4

√
π ln2 2

2β
· e

1
2 β (3.4)
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Figure 1: Order parameter z in D = 2 (left) and its susceptibility χ (right).
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Figure 2: Left: susceptibility χ of the order parameter z in D = 3. Right: same with FSS as in Eq. (3.5).

i.e. an essential scaling3 with critical exponent ν = 1. Summarizing, although for any fixed volume
L2 one can always find a coupling above which the topology corresponds to that dictated by the
boundary conditions, taking the thermodynamic limit first, as one should, the “strong” coupling
regime extends to β = ∞ and the system is always in the disordered phase. A vortex topology
cannot be defined.

Turning now to the D = 3 case and using MonteCarlo simulations to calculate z we basically
get the same picture. In Fig. (2) we show the susceptibility χ and its FSS with an essential scaling
Ansatz, again with βc = ∞:

βc(L)' A lnL2 +B ln lnL2 ; χL(βc(L))'CL2 (3.5)

The result is the same, i.e. in the continuum limit the theory is always in disordered phase and

3Compare with the critical behaviour of the XY model, ξ ∼ exp
(
bt−ν

)
and χ ∼ L2−η ln−2r L with ν = 1/2, η = 1/4

and r =−1/16 [25].

4



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
3
)
4
9
3

’t Hooft loop and the phases of SU(2) LGT G. Burgio

2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
0

10

20

30

40

50

60

70

80

90

100

 

 

L=12

L=16

L=20

L=24

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

 

 

L=12

L=16

L=20

L=24

Figure 3: Left: susceptibility χ of the order parameter z in D = 4. Right: same with FSS as in Eq. (3.5).

no vortex topology can be defined. The values obtained for βc are well within the scaling region
and for fixed volumes they are always lower than the pseudo-critical coupling at which the finite
temperature transition is measured.

The situation is inversed at D = 4. Here we still get the same result as above, i.e. an essential
scaling with the same critical exponents for our order paramter z. The values of the pseudo-critical
coupling βc are however higher than the values measured for the deconfinement scale, cfr. Fig. (3).

4. Conclusions

We have shown that ∀ D ≤ 4 the vortex topology for the standard Wilson action is always ill
defined in the continuum limit. This discretization artefact is driven by the too weak fall off of the
Z2 magnetic monopole density, Eq. (1.1). For any fixed β there always exists a lattice size L for
which enough open Z2 vortices can form, spoiling the superselection rule in the thermodinamic
limit. The separation among the regimes in D = 3 and D = 4 are substantially different. While
in D = 3 the deconfinement transition for fixed length L always lies in the spurious phase above
the pseudoctitical coupling βc(L) given in Eq. (3.5), for D = 4 the latter is always way above the
physical scale, making the physical volumes quite small.

For D = 4 one could define the theory above the the bulk transition along βA, corresponding
to the phase where topology is well defined, as in Ref. [6, 7]. There it was however found that
F 6= 0 in the confined phase, casting some doubt on the standard center vortices symmetry breaking
argument as a model for confinement. Further analysis in this case would be welcome, although
simulations in this case are technically quite difficult.

There is however an easy way out of the problem: just define the discretized theory through a
Positive Plaquette Model [26]. In this c ase the Z2 magnetic monopole contraint is always satisfied
while the order paramer z ≡ 1 by construction. This model should then deliver the correct results
if one is interested in investigating the role of center vortices.

5



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
3
)
4
9
3

’t Hooft loop and the phases of SU(2) LGT G. Burgio

We would like to stress that none of the above results contradicts universality. First, univer-
sality hold as long as no discretization artifacts obstacle the continuum limit. In our case, center
monopoles and the associated open center vortices spoil the equivalence among different discretiza-
tions. Second, all physical properties measurable in “experiments”, like glueball masses and the
critical exponents at the transition, should be reflected by physical observables which can be de-
fined irrespective of the discretization chosen, meaning that not everything that can be defined in a
given discretization should immediately acquire a physical meaning.
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