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1. Introduction

One of the most profound open questions in particle physics is to understand the pattern of
flavor symmetry breaking and mixing, and the origin of CP violation. In [1] we have outlined a
program to systematically investigate the pattern of flavor symmetry breaking. The program has
been successfully applied to meson and baryon masses involving up (u), down (d) and strange (s)
quarks.

A distinctive feature of our simulations is the way we tune the light and strange quark masses.
We have our best theoretical understanding when all three quark flavors have the same mass, be-
cause we can use the full power of flavor SU(3). Starting from the SU(3) symmetric point, our
strategy is to keep the singlet quark mass ¯m= (mu +md +ms)/3 fixed at its physical value, while
δmq ≡ mq− m̄, q = u,d,s is varied. As we move from the symmetric pointmu = md = ms (where
the pion mass is∼ 411MeV) to the physical point along the path ¯m= constant, thes quark be-
comes heavier, while theu andd quarks become lighter. These two effects tend to cancel in any
flavor singlet quantity. To leading order, the cancellation is exact at the symmetric point, and we
have found that it remains good down to the lightest points we have simulated sofar [1].

In order to compute physical observables to high precision, it is important toinclude and
control contributions from QED. Recent lattice investigations of electromagnetic (EM) corrections
to hadron observables have been performed on pure QCD background configurations [2], while
a simulation with dynamical photons, including meson-photon mixing effects, is stillmissing. In
this project we will extend our previous simulations of 2+1 flavor QCD with SLiNC fermions to
a fully dynamical simulation of 1+1+1 flavor QCD + QED.

2. QCD + QED pseudoscalar meson mass formulae

In pure QCD [1] our strategy was to start from a point with all three sea quark masses equal,
mu = md = ms, and extrapolate towards the physical point by keeping the average seaquark mass
m̄= (mu +md +ms)/3 constant. For this trajectory to reach the physical point we start at a point
m̄= m0, whereMπ = MK with 2M2

K +M2
π equal to its physical value. That isMπ = MK = 413MeV.

We call this point the physical SU(3) symmetric point. We denote the distance from m0 by δmq =

mq−m0, q= u,d,s. This forms a plane, as we have the constraintδmu+δmd +δms = 0. The bare
quark masses are defined by

am0 =
1

2κ0
−

1
2κc

, amq =
1

2κq
−

1
2κc

, (2.1)

whereκ0 gives the quark mass at the physical SU(3) symmetric point, and where vanishing of
all quark masses along the lineκu = κd = κs determinesκc. The quark massesmq are subject
to additive and multiplicative renormalization, while the reference pointm0 gets multiplicatively
renormalized only [1].

In this presentation we shall concentrate on the pseudoscalar meson octet.The expansion
aroundmq = m0, valid for the outer ring of the pseudoscalar octet, was found to be [1]

M2(ab̄) = M2
0 +α(δma +δmb)

+β0
1
6(δm2

u +δm2
d +δm2

s)+β1(δm2
a +δm2

b)+β2(δma−δmb)
2

(2.2)
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for arbitrary quarksq = a,b, with α andβ0,β1,β2 being the LO and NLO expansion coefficients,
respectively.

It is useful, in many respects, to vary valence and sea quark masses independently. This
is referred to as partial quenching (PQ). In this case the sea quark masses remain constrained by
m̄= constant, while the valence quark massesµu,µd,µs are unconstrained. Definingδ µq = µq−m̄,
we obtain the PQ mass formula

M2(ab̄) = M2
0 +α(δ µa +δ µb)

+β0
1
6(δm2

u +δm2
d +δm2

s)+β1(δ µ2
a +δ µ2

b)+β2(δ µa−δ µb)
2

(2.3)

Whenµq → mq, this result reduces to the previous result (2.2). The coefficients that appear in the
expansion about the flavor symmetric point (2.2) and in the PQ case (2.3) are the same. Hence this
offers a computationally cheaper way of obtaining them.

The symmetry of the electromagnetic current is similar to the symmetry of the quark mass
matrix. The simplifications that come from the constraintδmu + δmd + δms = 0 in the mass case
are similar to the simplifications we get from the identityeu +ed +es = 0. One difference between
quark mass and electromagnetic expansions is that in the mass expansion we can have both odd
and even powers ofδmq, whereas we are only allowed even powers of the quark charges. We can
therefore read off the leading QED corrections from [1], dropping thelinear terms and changing
masses to charges. For the outer mesons, and also for the partially quenched qq̄ mesons with all
annihilation diagrams turned off, we find

M2(ab̄) = M2
0 +α(δ µa +δ µb)

+β0
1
6(δm2

u +δm2
d +δm2

s)+β1(δ µ2
a +δ µ2

b)+β2(δ µa−δ µb)
2

+β EM
0 (e2

u +e2
d +e2

s)+β EM
1 (e2

a +e2
b)+β EM

2 (ea−eb)
2

+ γEM
0 (e2

uδmu +e2
dδmd +e2

sδms)+ γEM
1 (e2

aδ µa +e2
bδ µb)

+ γEM
2 (ea−eb)

2(δ µa +δ µb)+ γEM
3 (e2

a−e2
b)(δ µa−δ µb) .

(2.4)

The coefficients in (2.4) can be matched up with different classes of Feynman diagrams shown
in Fig. 1. The first diagram, with both ends of the photon attached to the same valence quark,
contributes to(β EM

1 + β EM
2 ) as well as(γEM

1 + γEM
2 + γEM

3 ). The second diagram, with the photon
crossing between the valence lines, only contributes toβ EM

2 andγEM
2 . The last diagram, with the

Figure 1: Examples of Feynman diagrams contributing to the meson electromagnetic mass to ordere2.
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photon being attached to the sea quarks, is an example of a diagram contributing to β EM
0 andγEM

0 .
It would be missed out if the electromagnetic field was quenched instead of dynamical.

Except forβ0, β EM
0 and γEM

0 , all coefficients can be determined by PQ simulations at our
expansion point. The termβ EM

0 (e2
u + e2

d + e2
s) can be absorbed intoM2

0. The coefficientsβ0 and
γEM

0 require simulations with unequal sea quark masses. Many of the terms in (2.4)cancel in the
combination

M2(ab̄)−
[

M2(aā)+M2(bb̄)
]

/2 = β2(δ µa−δ µb)
2 +β EM

2 (ea−eb)
2

+ γEM
2 (ea−eb)

2(δ µa +δ µb)+ γEM
3 (e2

a−e2
b)(δ µa−δ µb)

(2.5)

that will be important in our later discussions.

3. Lattice setup

The action we are using is

S= SG +SA +Su
F +Sd

F +Ss
F . (3.1)

HereSG is the tree-level Symanzik improved SU(3) gauge action, andSA is the noncompact U(1)
gauge action [3] of the photon,

SA =
1

2e2 ∑
x,µ<ν

(

Aµ(x)+Aν(x+ µ)−Aµ(x+ν)−Aν(x)
)2

. (3.2)

The fermion action for each flavor is

S̃q
F = ∑

x

{1
2 ∑

µ

[

q(x)(γµ −1)e−ieq Aµ (x)Ũµ(x)q(x+ µ̂)−q(x)(γµ +1)eieq Aµ (x)Ũ†
µ(x− µ̂)q(x− µ̂)

]

+
1

2κq
q(x)q(x)−

1
4

cSW∑
µν

q(x)σµνFµν(x)q(x)
}

, (3.3)
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Figure 2: The average plaquette forβ = 5.50 andκu = κd = κs = 0.12090 on the 243 × 48 lattice for
e2 = 1.25 (bottom red line) ande2 = 0 (top gray line) as a function of trajectory number.
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whereŨµ is a single iterated mild stout smeared link [1]. The clover coefficientcSW has been
computed nonperturbatively [4]. The quark charges areeu = 2/3 anded = es = −1/3 (in units of
e). We presently neglect EM modifications to the clover term. This will leave us withcorrections
of O(e2a), which are presumably smaller than theO(a2) corrections from QCD.

Upon integrating out the Grassmann variables in the partition function, and rewriting the re-
sultant determinant using pseudofermions, the effective action reads (generically)

S[U,A,{φ†,φ}] = SG[U ]+SA[A]+φ†
u

[

M (κu)
†
M (κu)

]−1
2 φu

+φ†
d

[

M (κd)
†
M (κd)

]−1
2 φd +φ†

s

[

M (κs)
†
M (κs)

]−1
2 φs,

(3.4)

whereM is the fermion matrix. We deal with the square root ofM †M by rewriting it as a rational
function

X−1/n = α0 +
N

∑
k=1

αk

X +βk
(3.5)

and employ the Rational Hybrid Monte Carlo (RHMC) algorithm[5]. At the symmetric point,
κu = κd = κs, this reduces to 2+1 quark species. Then the Hybrid Monte Carlo (HMC) algorithm
can be used for thed ands quarks, while the RHMC algorithm is used for theu quark. Away
from the symmetric point we would not expect to run into a sign problem as we will always keep
mu ≈ md.

4. Preliminary results and discussion

Our first dynamical QCD + QED simulation was done on the 243×48 lattice atβ = 5.50 and
κu = κd = κs = 0.12090. That is at the flavor symmetric pointδmu = δmd = δms = 0. We chose
e2 = 1.25. In Fig. 2 we compare the average plaquette with and without dynamical photons. The
difference is significant. Our strategy is to simulate at an artificially large coupling αEM ≈ 1/10,
and then interpolate between this point and pure QCD to the physical couplingαEM = 1/137.

As a first application we have looked at the EM mass shifts of quark and pseudoscalar meson
masses. In Fig. 3 we show PQ massesaM(qq̄) for qq̄ = uū, dd̄ (= ss̄) and a fictitious electrically
neutral quarkn, qq̄= nn̄, as a function of the PQ hopping parameterκPQ. The first point to notice is
that the mesons have become much heavier, especially theuū. We attribute this mostly to a shift in
κc for the quarks, due to their electromagnetic self-interaction, which amounts toan additive quark
mass renormalization. We would obviously expect this to be a bigger effect for theu than for thed
or squark, as observed. At the flavor symmetric point,κPQ = 0.1209, we find

aM(nn̄) = 0.4606(30) , aM(dd̄) = 0.5655(16) ,

aM(ud̄) = 0.7310(15) , aM(uū) = 0.8283(11) .
(4.1)

This is to be compared with the corresponding mass of pure QCD,aM = 0.1779(6) [1]. We
estimate the lattice spacinga to be≈ 10% smaller than in pure QCD, using the vector meson mass
for determining the change in scale.

A reasonable definition of the additive quark mass renormalization for eachflavor is

∆amq =
1

2κc
−

1
2κq

c PQ
, (4.2)
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Figure 3: Partially quenched QCD + QED pseudoscalar meson massesaM(qq̄) for qq̄ = uū, dd̄ andnn̄
against 1/κPQ. Also shown are the PQ masses from pure QCD, as given in [6].

whereκc = 0.121252 is the critical hopping parameter of QCD, and the PQ critical hoppingpa-
rameterκq

c PQ can be read off from Fig. 3. We find

∆amn = 0.036e2 , ∆amd = ∆ams = 0.056e2 , ∆amu = 0.122e2 . (4.3)

This is to be compared with the quark mass of pure QCD at the flavor symmetric point, amu =

amd = ams = 0.012. Note that(amu−amn) : (amd −amn) ≈ 4 : 1, as expected.
Our present fits givea2β EM

0 = 1.20e2 anda2β EM
1 = 0.44e2, assuming a linear dependence on

e2. Both β EM
0 andβ EM

1 come almost entirely from the shifts inκc. From PCAC and the leading
flavor expansion we expect thatM2(ud̄)−

[

M2(uū)+M2(dd̄
]

/2 = 0. Violations of this relation
cannot be present at leading order in the quark mass. In our data theβ EM

0 andβ EM
1 terms cancel,

and the only term which contributes at the expansion pointδ µu = δ µd = δ µs = 0 is β EM
2 ,

M2(ud̄)−
[

M2(uū)+M2(dd̄
]

/2 = β EM
2 , (4.4)

corresponding to the middle diagram in Fig. 1. From our fits we obtaina2β EM
2 = +0.025e2.

In order to understand the sign ofβ EM
2 , we note that opposite charges attract and like charges

repel. As a result, we would expect EM effects to raise the mass of, for example, theud̄ (π+) meson
relative to theuū anddd̄ mesons. That is exactly what we find, which is mirrored in a positive sign
of β EM

2 . We should, however, be aware that this result might be contaminated by QCD and heavy
quark effects.

Besides the mass splittings of mesons and baryons, we are interested in the masses ofu, d
ands quarks. A point to make is that the renormalization factors will now depend onboth the
QCD and the QED coupling, and theu quark will have a different renormalization factor and
anomalous dimension from the other two quarks. This means that the ratiomd/mu now depends on
renormalization scheme and scale. Likewise, isospin-violating mass splittings, such asMn−Mp,

6
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are scheme independent, but the question of how much of the splitting is due to the quark mass
differences, and how much is due to EM effects, becomes dependent onscheme and scale.

5. Outlook

In pure QCD we can impose perfect SU(3) symmetry by making all threeκ values equal.
With QED present, there is no way to have perfect SU(3) symmetry with physical charge ratios. A
physically reasonable definition is to look for a line, where the neutral pseudoscalar massesM(sd̄),
M(ds̄) as well as the PQ flavor diagonal massesM(uū), M(dd̄), M(ss̄) (with annihilation diagrams
turned off) andM(nn̄) are equal. We are currently using PQ calculations to locate this line. The
line will haveκd = κs 6= κu.

This symmetric line will end at a point, where all neutral pseudoscalar mesonsare massless.
We define this to be the chiral point. It is the point, where all our quark masses are zero. In the case
of thed andu quarks this is the correct definition. Even with QED present, we have a chiral SU(2)
symmetry connectingd ands quarks. So, if both quarks are massless, there will be a massless
Goldstone boson from the spontaneous symmetry breaking. Although the neutral pseudoscalar
mesons will be massless at the chiral point, the charged mesons can have a mass from EM effects.
Furthermore, the charged axial vector currents are no longer conserved after QED is added to the
action. Hence, there is no Goldstone boson for the charged pseudoscalar sector.

To summarize, our strategy is to compute hadron observables, both in QCD (which we have
done already) and in QCD + QED with ¯m, the average sea quark mass, to be the same (or nearly
the same) in both simulations. This we achieve by simulating at points, where the QCD + QED
pseudoscalar mesons have (approximately) the same mass as in the pure QCDsimulation. To
obtain statistically significant results, the calculations are performed at a suitable value ofe2. We
then may interpolate the numbers toαEM = 1/137, knowing the results ate2 = 0.
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