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Gluon–gluon fusion through a heavy-quark loop [1] is the main production channel of the

Standard Model Higgs boson at hadron colliders. At the LHC the gg → H cross section is typically

at least one order of magnitude larger than the cross section in the other channels for a wide range

of Higgs boson masses. The main contribution comes from the top loop, due to its large Yukawa

coupling to the Higgs boson. The QCD radiative corrections to this process have been computed at

next-to-leading order (NLO) both in the large-mt limit [2] and by including the exact dependence

on the masses of the top and bottom quarks [3, 4, 5]. The impact of the NLO correction is very

large, of the order of 80-100%. The NNLO corrections have been computed in the large-mt limit

[6, 7, 8] and further increase the cross section by about 25%. After the completion of the NNLO

calculation, the calculation has been improved in many respects. The logarithmically enhanced

contributions due to multiple soft emissions have been resummed up to next-to-next-to-leading

logarithmic accuracy (NNLL) and the result has been consistently matched to the fixed order NNLO

result [9]. Soft gluon resummation leads to an increase of the cross section of about 8% at the LHC

(
√

s = 8 TeV) and to a slight reduction of scale uncertainties. Such result [9] has been used as the

reference theoretical prediction for few years. The quantitative impact of soft-gluon resummation

is confirmed by the computation of the soft terms at N3LO [10]. Considerable work has been done

also for the computation of the EW corrections. Two-loop EW corrections have been computed

[11, 12, 13, 14, 15] and their effect increases the cross section by +5% for mH = 125 GeV [15].

Mixed QCD-EW effects have been studied in Ref. [16]. EW corrections from real radiation have

been studied in Ref. [17, 18]: both effects are at the 1% level or smaller.

Significant work has been done to estimate the uncertainties of the Higgs production cross

section. The accuracy of the large-mt approximation has been studied by computing subleading

terms in the large-mt limit [19, 20, 21, 22, 23, 24]. Such works have shown that the approximation

works remarkably well, to better than 1% for mH < 300 GeV. Admittedly, this was a decisive step

in having the theoretical prediction for the gg → H cross section under good control. In the case of

a light Higgs boson produced at the LHC the total theoretical uncertainty is of about ±15− 20%.

We refer the reader to the discussion in Ref. [25] for more details.

Various updated calculations on the gg → H cross section have been presented in the last few

years, and we discuss them in turn. The calculation presented in Ref. [16] and refined in Ref. [25]

starts from the exact NLO QCD calculation (including the dependence on the masses of the top and

bottom quarks) and adds the NNLO corrections in the large-mt limit, and the EW corrections [15]

assuming complete factorization. Mixed QCD-EW effects are evaluated in an effective field theory

approach. It also includes some (small) EW effects from real radiation [17]. The effect of soft-

gluon resummation is mimicked by choosing µF = µR = mH/2 as central values for factorization

and renormalization scales.

The calculation of Ref. [26], refined in Ref. [25], starts from the exact NLO cross section

and includes soft-gluon resummation up to NLL. Then, the top-quark contribution is considered

and the NNLL+NNLO corrections [9] are consistently added in the large-mt limit. The result is

finally corrected for EW contributions [15] in the complete factorization scheme. The results of

this calculation are used as reference at the Tevatron and the LHC. Recently, this calculation was

further updated by including the effect of the charm quark, which decreases the cross section by

about 1% [27].

Other updated calculations have appeared in the literature. We first discuss the calculation of
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Refs. [28, 29]. As far as the central value is concerned such calculation does not add much to the

ones mentioned above. However, the work of Refs. [28, 29] presented the first extensive, though

extremely conservative, estimate of the various sources of theoretical uncertainties affecting the

gg → H cross section. According to Ref. [29], the total uncertainty on the gg → H cross section

for a light Higgs boson at the LHC (
√

s = 7 TeV) is about ±25%.

An independent computation of the inclusive gg → H cross section was presented in Ref. [30].

Such calculation is based on the NNLO result obtained in the large-mt limit (the known depen-

dence on top and bottom quark masses up to NLO is not taken into account), corrected with EW

effects [15] and includes a resummation of soft-gluon contributions, including the so-called “π2

terms”. This calculation leads to QCD scale uncertainties of about a factor of three smaller than

the calculations discussed above, and, most likely, not reliable as true perturbative uncertainties.

Recently, a new calculation, implemented in the numerical program iHixs has been pre-

sented [31, 32]. Such calculation includes essentially the same perturbative contributions of the

one of Refs. [16, 25] (the additional diagrams considered here give a very small effect). The new

important features of iHixs are the inclusion of finite-width effects and the possibility to extend

the calculation to models with anomalous Yukawa and electroweak couplings.

For mH = 125 GeV and LHC with
√

s = 8 TeV the calculation of Ref. [27] gives

σ = 19.31+7.2%
−7.8%(scale)+7.5%

−6.9%(PDF+αS) (1)

whereas the calculation of Ref. [32] gives

σ = 20.69+8.4%
−9.3%(scale)+7.8%

−7.5%(PDF+αS) (2)

which is 7% higher, although still compatible within uncertainties.

The perturbative uncertainties could be reduced by extending the QCD calculation to N3LO.

At this order, there are four contributions: emission of three partons at tree level, emission of

two partons at one loop, emission of one parton at two loops, and the purely virtual correction at

three loops. Of these four contributions the three loop correction is known [33, 34], and recently

the three parton contribution at tree level has been evaluated as an expansion around the partonic

threshold [35]. What is still missing are the emission of one and two partons at two- and one-loop

order, respectively. Also the convolutions of the NNLO coefficients functions with the anomalous

dimensions needed at N3LO have been evaluated [36, 37]. The other relevant source of uncertainty

on the gg → H cross section are PDFs and the QCD coupling αS. As discussed above, at present

this uncertainty is about ±7−8%. With the accurate measurements that are expected of processes

sensitive to the gluon distribution and the QCD coupling αS, such as the production of tt̄ pairs and

inclusive jet production, accompanied by more precise theoretical predictions for the corresponding

cross sections [38, 39], we may expect that also the PDF+αS uncertainty will also be reduced in

the near future.
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