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1. Introduction

The Standard Model (SM) of electroweak and strong interactions is extremely successful in
describing all presently available experimental data. However, its validity can extend at most to
energies of the order of the Planck scale, where gravity comes into play. Let us therefore consider
the SM as an effective theory valid up to a scale Λ. We can then write the SM Lagrangian as

L =C2Λ
2H†H +λ

(
H†H

)2
+Lgauge +LYukawa +

∞

∑
d=5

nd

∑
i=1

Ci
d

Λ(d−4) Oi
d , (1.1)

where Oi
d is a generic gauge-invariant operator of dimension d. Now, it turns out that the La-

grangian truncated at d ≤ 4 has some very important “accidental” symmetries that are violated by
Oi

d>4. Most notable examples of such symmetries are given by baryon and lepton number conser-
vation. The agreement of the SM with experimental data would suggest a very high value of Λ, so
that the breaking of SM accidental symmetries gets strongly suppressed by the inverse powers of Λ

in front of the higher-dimensional operators. However, we see from the first term in eq. (1.1) that
C2Λ controls the scale of electroweak symmetry breaking. Thus, unless we are willing to accept an
extremely small value of C2 (which means an extremely large amount of fine-tuning, since radia-
tive corrections within the effective theory naturally generate C2∼O(1)), we are forced to consider
values of the New Physics (NP) scale Λ not too far above the electroweak scale. But then the SM
accidental symmetries require that NP has a peculiar structure, so that the cofficients of symmetry-
breaking higher dimensional operators are strongly suppressed and the phenomenological success
of the SM remains unscathed. Turning the argument around, the coefficients of those higher di-
mensional operators that break SM accidental symmetries provide the most stringent constraints
on the NP scale and couplings (or better, on a combination thereof).

Let us now concentrate on two accidental symmetries of the SM: i) the absence of tree-level
Flavour Changing Neutral Currents (FCNC), and the GIM suppression of loop-mediated FCNC; ii)
The absence of tree-level CP violation in weak interactions. These accidental symmetries ensure
that flavour physics is extremely sensitive to NP. In particular, CP violation in quark weak inter-
actions in the SM is governed by one single phase in the Cabibbo-Kobayashi-Maskawa (CKM)
mixing matrix, leading to stringent correlations between all CP violating observables. A very use-
ful tool to study these correlations is given by the so-called Unitarity Triangle Analysis (UTA).
The unitarity of the CKM matrix implies several triangular relations; in particular, one of these
relations defines a triangle whose sides and angles are connected to several observables in flavour
physics. Since all CP violating observables are connected to the phase of the CKM matrix, they
all translate into a constraint on the apex of the UT. Furthermore, the UTA allows to combine in
a coherent way all constraints coming from both CP-conserving and CP-violating processes. In
the left plot in Figure 1 we present the result of the UTA in the SM. We obtain at 68% probability
ρ̄ = 0.132±0.021 and η̄ = 0.350±0.014.

2. CP violation in meson-antimeson mixing

Neutral meson mixing is governed by the transition matrix element between M0 and M̄0

mesons, which can be parameterized in terms of two fundamental matrix elements: M12, which
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Parameter CεK CBd φBd [
◦] CBs φBs [

◦]

Value 1.08±0.18 1.01±0.15 −2.2±3.7 1.03±0.10 −0.84±2.47

Table 1: Numerical results (at 68% probability) for the NP parameters in K and Bq mixing.

for Bq and for the CP-violating part of K0 mixing is dominated by the exchange of virtual heavy
states (top quarks and possibly new heavy particles), and Γ12, which is dominated by the tree-level
exchange of on-shell intermediate states. We assume here and in the following that NP is a negli-
gible correction to tree-level processes. We can therefore write the relevant amplitudes in terms of
SM ones as follows:

Mfull
12,M = 〈M|H eff|M̄〉= MSM

12,M +MNP
12,M =CMeiφM MSM

12,M (2.1)

Γ
full
12,M = Γ

SM
12,M +penguin effects .

Notice that Im(ΓSM
12,Bq

/MSM
12,Bq

) ∼ 0 due to GIM suppression, since MSM
12,Bq

∝ (VtbV ∗tq)
2 and ΓSM

12,Bq
∝

(VtbV ∗tq)
2+ GIM-suppressed terms. On the other hand, in the standard CKM parameterization,

Arg(MSM
12,Bd

)= 2β ∼O(1) , but Arg(MSM
12,Bs

)=−2βs∼O(10−2) and Arg(MSM
12,D0 ,Γ

SM
12,D0)<O(10−2) .

From experiments we can extract the following combinations of the above parameters in the K and
B sectors:

∆mBq = 2|Mfull
12,q|=CBq∆mSM

Bq
,

∆Γq

∆mBq

= Re
Γfull

12,q

Mfull
12,q
∼

∆ΓSM
q

∆mSM
Bq

cos2φBq

CBq

, (2.2)

Aq
SL = Im

Γfull
12,q

Mfull
12,q
∼−

∆ΓSM
q

∆mSM
Bq

sin2φBq

CBq

∼−
∆Γq

∆mBq

tan2φBq ,

SJ/ΨK ∼ sin2(β +φBd ) , SJ/Ψφ ∼ sin2(−βs +φBs) , εK ∼CεK ε
SM
K .

To exploit the full constraining power of the measurements in eq. (2.2) we must obtain a NP-free
determination of CKM parameters, so that we can compute the SM mixing amplitudes. To this
aim, we use tree-level processes: semileptonic B decays determine |Vub| and |Vcb|, B→DK decays
determine the angle γ of the Unitarity Triangle (UT) and B→ ππ , πρ and ρρ decays determine
the angle α [1]. Using the tree-level UT, we can extract CBq , φBq and CεK from experimental
data [1, 2, 3].

In Figure 1 we compare the determination of the UT in the presence of NP to the result of the
SM UTA. Thanks to the redundancy of the UTA, the accuracy obtained in the presence of NP is
comparable to the SM one.

Figure 2 shows the result of the NP analysis for the K, Bd and Bs sectors. Numerical results
for NP parameters are summarized in table 1. We see full compatibility with the SM, with possible
NP amplitudes in the 20−30% range.

Let us now turn to the analysis of D-D̄ mixing. We update the analysis of ref. [4] including
the recent LHCb measurement of D→ Kπ decays [5]. Since it is a CP-averaged measurement, we
interpret it as follows:

y′→
y′++ y′−

2
, (x′)2→

(x′+)
2 +(x′−)

2 +(y′+)
2 +(y′−)

2

2
− (y′)2 . (2.3)
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Figure 1: Determination of the UTA within the SM (left) or in the presence of NP (right). The contours
correspond to 68% and 95% probability regions. The coloured regions correspond to 95% probability for a
single constraint.

The results of the fit are reported in Table 2. The corresponding p.d.f are shown in Figs. 3 and
4.

3. Constraints on the scale of NP

Let us now consider the most general form of the ∆F = 2 effective weak Hamiltonian. The
latter is parameterized by Wilson coefficients of the form

Ci(Λ) =
FiLi

Λ2 , i = 1, . . . ,5 , (3.1)

where Fi is the (generally complex) relevant NP flavor coupling, Li is a (loop) factor which depends
on the interactions that generate Ci(Λ), and Λ is the scale of NP, i.e. the typical mass of new particles
mediating ∆F = 2 transitions. For a generic strongly interacting theory with an unconstrained flavor
structure, one expects Fi ∼ Li ∼ 1, so that the phenomenologically allowed range for each of the
Wilson coefficients can be immediately translated into a lower bound on Λ. Specific assumptions
on the flavor structure of NP correspond to special choices of the Fi functions. For example Minimal
Flavor Violation (MFV) models [6, 7, 8, 9] correspond to F1 = FSM and Fi6=1 = 0.

Following Ref. [10], in deriving the lower bounds on the NP scale Λ, we assume Li = 1, that
corresponds to strongly-interacting and/or tree-level coupled NP. Two other interesting possibili-
ties are given by loop-mediated NP contributions proportional to either α2

s or α2
W . The first case
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Figure 2: The dark and light colored areas show the 68% and 95% probability regions.

parameter result @ 68% prob. 95% prob. range
|M12| [1/ps] (5.0±2.1) ·10−3 [0.8,9.1] ·10−3

|Γ12| [1/ps] (16±2) ·10−3 [12,20] ·10−3

Φ12 [◦] (2±11) [−39,35]
x (4.2±1.8) ·10−3 [0.4,7.7] ·10−3

y (6.4±0.8) ·10−3 [5,8] ·10−3

|q/p|−1 (−1.5±7.7) ·10−2 [−16,17] ·10−2

φ [◦] (0.3±2.6) [−8.8,3.7]
AΓ (−0.1±0.7) ·10−3 [−1.6,1.4] ·10−3

AM (3±15) ·10−2 [−33,32] ·10−2

RM (2.8±0.8) ·10−5 [1.6,5.1] ·10−5

RD (3.47±0.06) ·10−3 [3.36,3.59] ·10−3

δKπ [◦] (11±13) [−26,34]
δKππ0 [◦] (33±21) [−10,79]

Table 2: Results of the fit to D mixing data.

corresponds for example to gluino exchange in the minimal supersymmetric SM. The second case
applies to all models with SM-like loop-mediated weak interactions. To obtain the lower bound on
Λ entailed by loop-mediated contributions, one simply has to multiply the bounds we quote in the
following by αs(Λ)∼ 0.1 or αW ∼ 0.03.

In agreement with Ref. [10], we find that in the K0 sector, due to the non-vanishing chiral
limit (chiral enhancement) of their matrix elements, all bounds coming from the contributions of
non-standard operators (i.e. from the operators Oi with i 6= 1) are more than one order of magnitude
stronger than the bound from the SM O1 operator.
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Figure 3: One-dimensional p.d.f. for the parameters |M12|, |Γ12| and Φ12.
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Figure 4: One-dimensional p.d.f. for the parameters x, y, |q/p|−1 and φ .

4. Conclusions

At present, all observed phenomena in the realm of CP violation exhibit a remarkable consis-
tency with the SM predictions. Given the loop and GIM suppression of CP violation in the SM,
this consistency can be translated into formidable bounds on the scale of NP. It remains as a theo-
retical challenge to understand the origin of the fermion mass and mixing hierarchy and to provide
a suitable protection to NP contributions to CP violation, in such a way that NP can arise at scales
relevant for the solution of the hierarchy problem. In this respect, probing flavour and CP violation
with increasing accuracy remains the main avenue to physics beyond the SM.
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