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1. Introduction

Charm physics is an important and interesting part of flavor physics and has caused some
excitement recently. The dominance of the first two quark generations and an efficient Glashow-
Iliopoulos-Maiani (GIM) mechanism leads to generically small standard-model effects for mixing
and CP violation. However, the large long-distance contributions are difficult to evaluate. Thus
D-meson decays are less suited for precision extractions of Cabibbo-Kobayashi-Maskawa (CKM)
matrix elements than, for instance, K- and B-meson decays. On the other hand, the neutral de-
cays are interesting because they form a bound state of up-type quarks which exhibits particle-
antiparticle mixing, and new-physics effects could easily be of the same order of magnitude as the
small standard-model contribution.

For instance, it was widely assumed that the size of direct CP violation in D decays is small
within the standard model. By the end of 2011, the LHCb collboration published a somewhat
unexpectedly large value for the difference of CP asymmetries in the D0 → K+K− and D0 →
π+π− modes, ∆ACP ≡ACP(D→ K+K−)−ACP(D→ π+π−), namely ∆ACP = (−0.82±0.21±
0.11)% [1]. This measurement was then soon confirmed by the CDF collaboration, who found
∆ACP = (−0.62±0.21±0.10)% [2]. Subsequently, some theoretical groups argued that this value
could be accommodated within the standard model. At the beginning of this year, the LHCb
collaboration updated their original pion-tagged analysis to find the significantly smaller value
∆ACP = (−0.34± 0.15± 0.10)% [3], and published a second, muon-tagged analysis, yielding
∆ACP = (+0.49± 0.30± 0.14)% (note the unexpected positive sign) [4]. Inclusion of BaBar [5]
and Belle [6] results leads to the current world average ∆ACP = (−0.329± 0.121)% provided by
the HFAG group. While this new value can likely be accommodated within the standard model,
the large theoretical uncertainties do not allow us to exclude a new-physics contribution.

In this article we will discuss the theory of hadronic two-body D decays, with an emphasis on
mixing and CP violation, and look at ∆ACP in more detail. We will also mention some strategies
to look for effects of new physics in direct CP violation.

2. Hadronic two-body D-meson decays

Flavor-changing transitions are induced in the standard model by the exchange of W bosons,
whose couplings to quarks are proportional to CKM matrix elements. Because of the hierarchy
of the CKM matrix, D-meson decays are dominated by the first two generations of quarks, up to
corrections of order λ 4, where λ ≡ |Vus| ≈ 0.23. We thus expect CP-violating effects to be small.
We can classify the two-body decay modes according to the size of the contributing CKM matrix
elements as Cabibbo-favored (CF), singly (SCS) and doubly (DCS) Cabibbo-suppressed. Examples
are the modes D0→ K−π+ (proportional to λ 0); D0→ π+π−, D0→ K+K−, D0→ K0K̄0, D+→
π+π0 (suppressed by one power of λ ); and D0→ K+π− (suppressed by two powers of λ ).

The starting point for most analyses is the weak effective Hamiltonian [7]. The effective field
theory formalism allows to separate short- and long-distance contributions. The former, parameter-
ized by the Wilson coefficients of the effective operators, can be calculated in perturbation theory
with, in principle, arbitrary precision, including the summation of large-logarithmic contributions
to all orders in the strong coupling constant. The hadronic matrix elements, on the other hand,
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are dominated by nonperturbative QCD effects and much harder to evaluate. The heavy-quark
expansion is not expected to work well, due to the large value of ΛQCD/mc. Flavor symmetries
(SU(3)flavor and its subgroups like isospin and U spin), plus breaking effects, can help to extract
hadronic matrix elements from data, with possibly large uncertainties. The ultimate way will be
the computation of the matrix elements using lattice QCD, probably in the not so near future [8].

3. Mixing and CP violation

The neutral D-meson system is unique in that it exhibits particle-antiparticle mixing in the
up-quark sector: top quarks decay before they can hadronize, and up quarks do not form neutral
bound states with opposite quantum numbers.

The short-distance contribution to D mixing is heavily CKM-suppressed, and the remaining
contributions of internal light quarks represent non-local effects of exchanged light mesons, which
cannot be evaluated perturbatively. In general, the time evolution in the Wigner-Weisskopf approx-
imation of the neutral D-meson system is given by the Schrödinger equation

i
d
dt

(
|D(t)〉
|D̄(t)〉

)
=

(
M− i

Γ

2

)(
|D(t)〉
|D̄(t)〉

)
, (3.1)

where M and Γ are the Hermitean mass- and decay matrices, respectively. The equation is solved
by going to the mass eigenstate basis

|DH,L〉= p|D0〉∓q|D̄0〉 (3.2)

which diagonalizes the Hamiltonian (see [9] for details), with eigenvalues

MH,L− iΓH,L . (3.3)

They are conventionally combined into the parameters

ΓD ≡
ΓH +ΓL

2
, x≡ MH −ML

ΓD
, y≡ ΓH −ΓL

2ΓD
. (3.4)

The subscripts H and L stand for the heavier and lighter mass eigenstate, respectively. The theory
prediction for x and y is difficult. They vanish for exact SU(3) flavor symmetry [10]; non-zero value
arise only at second order in flavor-symmetry breaking [11]. We can express these parameters as
sums over on-shell or off-shell intermediate states:

y =
1

2ΓD
∑
n

ρn[〈D0|H |n〉〈n|H |D̄0〉+ 〈D̄0|H |n〉〈n|H |D0〉] ,

x =
1

ΓD

[
〈D0|H |D̄0〉+P∑

n

〈D0|H |n〉〈n|H |D̄0〉+ 〈D̄0|H |n〉〈n|H |D0〉
M2

D−E2
n

]
.

(3.5)

Here ρn is the density of the state n and P denotes the principle value. The first (local) term in the
second line is negligible in the standard model; however, it could get contributions from heavy new
particles above the electroweak scale. There are two main approaches to predict x and y within the
standard model [11], with both their advantages and shortcomings.
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The inclusive approach [10, 12, 13] amounts to expanding Eq. (3.5) in a series of local oper-
ators of increasing dimension. The leading dimension-six box diagrams yield the estimate xbox ∼
few×10−5, ybox ∼ few×10−7, where xbox ∝ m4

s , ybox ∝ m6
s . These chiral suppressions can be lifted

by quark condensates in higher-order contributions. Including dimension-eight operators, the es-
timates are x ∼ y . 10−3 [11]. Note that using heavy-quark expansion, the authors of [14] do not
exclude values of y∼ 1% in the standard model. All these values constitute order-of-magnitude es-
timates rather than presise predictions. The assumed so-called quark-hadron duality holds exactly
only in the limit mc→ ∞ and might receive large corrections.

In the exclusive approach [15, 11, 16] y is evaluated by performing the sum over exclusive
final states, taking into account, among others, effects of SU(3) breaking and resonances. While
the authors of [16] find x ∼ y . 10−3, in [11] values of y ∼ 1% appear naturally. y can then be
related to x via a dispersion relation, yielding x∼ 1% [17].

We conclude that there are large uncertainties in the standard-model prediction of the mixing
parameters in the neutral D-meson system. Thus, usually the experimental values, which are both
of order 0.5%, are used as constraints on new physics, demanding that new contributions at most
saturate the measured values within the experimental uncertainties.

Let us now take into account CP violation. As is well known, we can distinguish three types of
CP violation in meson decays (for details, see the review [9]): CP violation in decay, CP violation
in mixing, and CP violation in the interference of decays with and without mixing. Looking at the
time-integrated CP asymmetry for final the CP eigenstate f

a f ≡
Γ(D0→ f )−Γ(D̄0→ f )
Γ(D0→ f )+Γ(D̄0→ f )

= ad
f +am

f +ai
f , (3.6)

we see that it contains all three types of CP violation, here denoted by ad
f , am

f , ai
f , respectively.

Using the experimental constraints on x,y, we find the simplified expressions [18]:

am =− y
2

(∣∣∣∣qp
∣∣∣∣− ∣∣∣∣ p

q

∣∣∣∣)cosφD , ai =
x
2

(∣∣∣∣qp
∣∣∣∣+ ∣∣∣∣ p

q

∣∣∣∣)sinφD , (3.7)

where φD is the phase of λ f ≡ q
p

Ā f
A f

, and A f = A(D0→ f ) is the amplitude for a D meson decaying
into a final state f . Indirect CP violation (am

f , ai
f ), related to mixing effects, is expected to be very

small in the standard model and is universal (process-independent) to a good approximation.
Let us now focus on direct CP violation. We can write the relevant amplitudes as

A f = AT
f
[
1+ r f ei(δ f−φ f )

]
, Ā f = AT

f
[
1+ r f ei(δ f +φ f )

]
, (3.8)

where r f is the relative magnitude of the subleading penguin amplitude with a relative strong phase
δ f and a weak phase φ f . Both of them have to be nonzero in order to have nonvanishing direct CP
violation. This can be seen in the expression

ad
f :=
|A f |2−|Ā f |2

|A f |2 + |Ā f |2
= 2r f sinφ f sinδ f , (3.9)

where we kept only the leading term in the small ratio r f . The contribution am +ai of indirect CP
violation is universal and cancels to good approximation in

∆ACP := ad
K+K−−ad

π+π− . (3.10)
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The world average for ∆ACP quoted in the introduction still constitutes an almost 3σ evidence
for non-zero direct CP violation in D→ K+K−,π+π−. The question is whether this is a clear
signal for new physics.

An estimation of the hadronic matrix elements in the limit mc → ∞ yields a value of ∆ACP

roughly a factor of three below the measurement. However, from SU(3) fits [19, 20, 21, 22] we
know that power corrections are large. This signals the breakdown of the 1/mc expansion. The fact
that penguin contraction matrix elements can be large has already been observed in [23]; they can
account for the measured value of ∆ACP and decay rate difference, with nominal U-spin breaking
of order 20% [24]. Various groups found at least marginal consistency of the old, larger value with
the standard model [22, 25, 26, 27]. The new, smaller value can likely be accommodated within
the standard model.

4. Testing for new physics

We have seen in the last section that ∆ACP can likely be accommodated within the standard
model. Nevertheless, a new-physics contribution to ∆ACP is by no means excluded. In this section
we describe some strategies to disentangle the two contributions.

If new physics resides in new contributions to ∆I = 1/2 transitions (I stands for isospin),
they can be disentangled using isospin sum rules. The basic observation is the following [28]:
The standard-model tree-level effective Hamiltonian for D→ ππ has both ∆I = 1/2 and ∆I =
3/2 contributions, QT ∼ (d̄c)(ūd). The QCD penguin operators are have only a pure ∆I = 1/2
component, QP ∼ (c̄u)⊗ (ūu+ d̄d + s̄s). It follows that ∆I = 3/2 direct CP-violating transitions
are absent in SM, since they would need two interfering amplitudes.

There are isospin-breaking effects of O(1%), about the same order of magnitude as the value
of ∆ACP. However, isospin breaking by quark masses and QED effects is CP conserving. The
CP-violating contribution of the electroweak penguins is down by α/αs ≈ 1% with respect to the
already small QCD-penguin contribution.

The isospin decomposition of the amplitudes is

Aπ+π− =
1√
6
A3/2 +

1√
3
A1/2 , Aπ0π0 =

1√
3
A3/2−

1√
6
A1/2 , Aπ+π0 =

√
3

2
A3/2 . (4.1)

For instance, note that the decay D+→ π+π0 is pure ∆I = 3/2 transition, so any CP asymmetry
in this mode would be due to new physics. However, the converse is not true: The strong phase
could be smaller between the standard-model and new-physics ∆I = 3/2 amplitudes than between
the ∆I = 1/2 and ∆I = 3/2 amplitudes. Another test is given by the following sum rule:

|Aπ+π− |2−|Āπ−π+ |2 + |Aπ0π0 |2−|Āπ0π0 |2−
2
3
(|Aπ+π0 |2−|Āπ−π0 |2) =

1
2
(|A1/2|2−| ¯A1/2|2) .

(4.2)

If this sum is zero, while the individual rate differences are nonzero, CP asymmetries are likely
dominated by new physics effects in the ∆I = 3/2 transition.

Analogous rules apply for each polarization state of D+→ ρ+ρ0. It is possible to write down
sum rules also for the D→ ρπ , D→ K(∗)K̄(∗)π(ρ), D+

s → K∗π(ρ) decay modes [28].
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The isospin sum rules test only for new physics in ∆I = 3/2 transitions. However, most well-
motivated models give new contributions to the gluon penguin Q8g = mc

4π2 ūLσµνT agsG
µν
a cR. A

prominent example is left-right squark mixing in supersymmetric models [18, 29, 30]. δLR contri-
butions to Q8g are enhanced by mg̃/mc, whereas there is no such enhancement of ∆C = 2 opera-
tors [18]. In this way we can have O(10−2) effects in direct CP violation and still evade bounds
from D0− D̄0 mixing. For a more complete overview, see the review [31].

The measurement of radiative decay modes can help testing for ∆I = 1/2 new physics [32].
The first key observation here is that new-physics models with a large chromo-magnetic penguin
Q8g typically also have large electromagnetic dipole operator Q7γ =

mc
4π2 ūLσµνQueFµνcR. Even if

this is not the case, a sizeable Wilson coefficient will be generated by QCD effects through operator
mixing.

The second key observation is then that Q7γ has a large matrix element in the D→ (V =

ρ0,ω)γ and D→ (φ → K+K−)γ decay modes. A detailed analysis [32] shows that we can expect
asymmetries as large as

≈ 10% , D→ ρ
0
γ , D→ ωγ ;

≈ 2% , D→ K+K−γ (above the φ resonance).
(4.3)

This is one order of magnitude above what can reasonably be expected within the standard model.
The usual caveat is that strong phases might be small. This limitation could be overcome with a
time-dependent analysis D→ V γ or D→ V (γ∗ → `+`−), which is however experimentally chal-
lenging.

5. Conclusion

Charm physics is theoretically and experimentally challenging. Although D-meson decays are
currently not suited for precision extraction of CKM-matrix elements, some observables are in prin-
ciple very sensitive to new-physics contributions. In this article, we focused on a very small subset
of interesting modes. There are many more interesting modes which have not been mentioned
above. The decays D+→ `+ν are helicity suppressed. For instance, D+→ e+ν has a branching
ratio of order O(10−8). The flavor-changing neutral current transitions D0→ µ+µ− ,e+e− ,γγ are
long-distance dominated in the standard model. The corresponding branching ratios are estimated
to be very small; a recent analysis finds Br(D0→ µ+µ−)∼ 3×10−13, Br(D0→ γγ)∼ 10−8 [33].
The branching ratios for the modes D0 → µ±e∓ are zero in the standard model to very good ap-
proximation. Any observation of these modes well above the standard-model expectations would
be a clear signal of new physics.

Lastly we would like to mention that D-meson decays provide an important testbed for tech-
nical tools like lattice-QCD calculations or heavy-quark expansion. Furthermore, they can provide
information also about the light-quark sector [34].

We expect that progress on the theoretical side, in particular from lattice QCD, as well as
experimental data from LHCb and flavor factories, will give new input to our efforts to find new
phenomena beyond the standard model using D-meson decays. Charm physics is full of surprises
and will be an important part of the flavor-physics program also in the coming years.
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