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The study of the CKM matrix elements with increasing precision requires a reliable evaluation
of hadronic matrix elements of axial and vector currents which can be done with Lattice QCD.
The tiniest entry, |V,;|, can be estimated independently from B — tv and B — nlv decays. The
ALPHA collaboration has undertaken the effort to evaluate non-perturbatively the decay constant
f3 and the f*(g) form factor for ¢* close to g2,,, entering these determinations. Since for the b
quark m;, > a~! for available lattice sizes, an effective description of the b quark is necessary.
HQET provides an example of the latter. As any effective theory, HQET is predictive only when a
set of parameters have been determined through a process called matching. The non-perturbative
matching procedure applied by the ALPHA collaboration consists of 19 matching conditions
needed to fix all the relevant parameters at order 1/mp of the HQET action and the axial and vector
currents. We present a study of one-loop corrections to two representative matching conditions.
Our results enable us to quantify the quality of the observables used in the matching procedure.
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Heavy Quark Effective Theory [1] in its basic formulation provides an effective description of
QCD with Ny — 1 light quarks and a single heavy quark whose mass is much larger than the QCD
energy scale Aqcp. The heavy quark is treated non-relativistically and processes are described in
its reference frame. In order to avoid the ambiguities of the perturbative expansion of HQET in the
strong coupling g [2] one may employ non-perturbative techniques such as lattice QCD and con-
sequently lattice HQET [3]. As any effective theory HQET containes several low energy constants
which need to be determined in order to match it to QCD and grant it a predictive power. This
step called *matching’ should also be performed non-perturbatively [4]. The ALPHA collaboration
has set up a non-perturbative matching strategy to determine the needed HQET parameters at order
1/my, [5, 6, 7]. Tt relies on a set of carefully chosen observables which are precisely computable in
lattice QCD as well as in lattice HQET. We describe the results of a one-loop computation which
tests the quality of some of these observables. In order to estimate the l/ml% contributions we
define a quantity R which measures the ratio of the one-loop corrections to their tree-level value
of 1/my, terms. The paper is organized as follows: in section 1 we introduce the lattice HQET
Lagrangian and the currents as well as higher dimensional operators needed to account for 1/m
corrections, then in section 2 we briefly describe the framework in which the matching observables
are constructed and finally in section 3 we discuss the one-loop results and conclude.

1. HQET at next-to-leading order in m,

The formulation of lattice HQET was thoroughly discussed in [3] and therefore we only quote
the relevant formulae. The Lagrangian is a sum of the static part and two 1/my, corrections

DE/ﬂHQET - a%tat - (a)kingkin + wspinﬂpin) + ﬁ(l/mg), (11)

It is part of the definition of HQET that the kinetic and chromomagnetic operators enter only as
insertions in the static vacuum expectation values, namely for some operator & we have

<ﬁ>HQET = <ﬁ>stat + Wxin Z<ﬁ$kin (x)>stat + Ospin Z<ﬁo§/’épin (x)>stat (1.2)
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The HQET operators themselves are also expanded in 1/m;. For the axial current we have

_ _1 21
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_ 1 — _ 1 S —
(Ak)R = ZEkQET{%n%Wh_}_CAleE(V?_ V?)%’YSYkWh—i_cAk,Z Wli(vi_ Vﬁ)%l//h
_ 1 <— _ 1 —
+ cays Wli(VfﬂL VOBV Wh + ca WIE(ViJF Vv,

and similarly for the vector current (we use the notation from Ref.[3]). y; denotes a relativistic,
massless fermion, whereas yj, is a nonrelativistic heavy fermion. In order to define HQET and the
currents at the next-to-leading order one has to fix 3 parameters in Zyger and 2 x 3 parameters
in Ap(x) and Vp(x) and 2 x 5 in Ag(x) and Vi (x) giving in total 19 parameters. They are usualy
denoted collectively by @;, with i = 1,...,19. In this work we concentrate on the parameters @i,
and c4,, and the corresponding matching conditions.
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2. How to determine the HQET parameters?

The HQET parameters are determined by considering observables ¢; which can be reliably
calculated in lattice QCD and in lattice HQET. The matching condition reads

¢i.qcp (L,z,a=0) = OinqeT (L,2,0,{0(2,a)}) = st (L, a) + ;1 /m(Lya) @j(z,a),  (2.1)

where L is the size of the finite volume in which the observables ¢; are defined, a is the lattice
spacing and z is a dimensionless parameter used to fix the heavy quark mass m given by z = m (L)L,
where m(L) is the mass defined in the lattice minimal subtraction scheme [8]. In Ref.[9] it was
proposed to use observables defined in the Schrédinger functional framework which differs from
the usual one by the boundary conditions that are imposed on the fields at time 0 and 7" (for a
more detailed discussion of the Schrédinger functional framework see [8]). Apart from the usual
fields in the bulk one has boundary fields which can be used to construct correlation functions. The
observables analyzed in this work are constructed from boundary-to-boundary or boundary-to-bulk
correlation functions, e.g.

F(0) = L6 Z (& )8 G168 (), (2.2)

uv7y7
alz _
K1(9)=—@Z Y (GG ™oy né(=), (2.3)
i wvy,z
Clé =
f0(8,%0) = —— (Ch(w) 561 (v) (Ao) , (x0)) (2.4)

where ¢ and { denote fermionic fields living on the boundary. The 6 angles are additional kine-
matic parameters corresponding to the momenta of quark fields in the bulk. The observables are
defined in such a way as to cancel all renormalization factors and the angles can be tuned such as
to minimize cut-off effects [9]

F1(6y) K (6y)

3 Fay (81,30 =T/2)
—1lo —1lo ,
4 2 F(6) 4 %K (6)

fa0(62,x0 =T/2)"

%(91,92) = ¢4<91,92> :10g (25)

In Ref.[9] the proposed set of matching conditions was solved at tree-level yielding the clas-
sical HQET parameters and it was checked that the 1/ m% corrections are small. The purpose of
the present study is to confirm these conclusions by a one-loop computation similar to the one
performed in [10].

The one-loop contributions to the observables Eq.(2.5) were calculated with pastor, an auto-
matic tool for generation and calculation of lattice Feynman diagrams [11]. It is a flexible package,
which takes as input the discretized action, the definition of the correlation function, and parameters
such as L/a and the dimensionless heavy quark mass z. Then, pastor automatically generates
the Feynman rules corresponding to the specified action, all Feynman diagrams corresponding to
the requested correlation function and a numerical contribution of each diagram. The calculations
were performed for the Wilson plaquette gauge action and &'(a)-improved Wilson fermions with
two light quarks and one massive. One-loop contributions were evaluated for ¢; ocp and @ sgar -
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Figure 1: Results for ¢» (up) and ¢4 (down). Figures on the left present the z dependence of the one-loop

contributions to QCD observables together with their static limit. For the fits we used the functional ansatz

with two free parameters f; and g;: (]Ji&w (z) = ¢i§;2at + fi/z+ gilog(z)/z. Figures on the right show the

corresponding R ratios. Fits were performed using data on the left of the vertical solid line.

3. How to estimate the quality of the observables?

To analyze the 1/z? corrections to an observable ¢ at one-loop order in the coupling constant
we expand the matching condition Eq.(2.1) in g and get (dropping terms of order g* and 1/z%)

¢(()OC)D (2) +82¢(()1C)D (z) = ¢s(t(2)12 +82¢s(t3 +z7! Z (d)t(()) ét(O) +g2(f)t(l)(z) (f;t(O) +g2d)t(0) (f;t(l)> (3.1

t

where the sum over ¢ refers to different subleading contributions. The parameters @, differ from
the HQET parameters in Eq.(2.1) by an explicit factor 1 /m(L) which was factored out, whereas &,

have an explicit factor L. In this notation the kinetic contribution is d)lg?) = %, the spin contribution
vanishes at tree level (¢s([())i)n = 0), and the remaining contributions correspond to corrections to the

current operators proportional to the coefficients cx. To quantify the 1/z? corrections we define a
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ration R by extracting the one-loop contribution from Eq.(3.1) by dividing by ((bggD (z) — ¢S(tg)t)g2

(PQCD (2) — 0l _ Lo ‘P '(61,8,) | ¥ (f)z(l)( )(ﬁ,(O)(Gl,Gz)

R(61,6:) = 5 © +

Pocp (2) = Ogtart s a)t ¢ (91792) Y wt ¢t (91,92)
=a(61,6,)+B(61,6,)+v(0:,6,)log(z) 3.3)

Since the left hand side of Eq.(3.3) has a well defined continuum limit, the right hand side can

(3.2)

be also considered in the continuum (the right hand side of Eq.(3.3) must be considered as a
entity since the particular terms in the sum may be divergent as a — 0). Note that the explicit

(1)

1/z- dependence cancels. The only z dependence remains in @, '(z) and can be parametrized as
a)t< (z) = B, + v:10g(z). Hence, when R is plotted on a linear-log plot, the ratio R measures simul-

taneously:

e 1/7? corrections: deviations from a linear behaviour signal 1/z> contributions,

e slope: the coefficient of the subleading logarithm.

The slope gives information about a specific linear combination of the anomalous dimensions of
the 1/m;, operators, which at one-loop order are universal (independent of the scheme) and in
some cases can be predicted analytically. We will now present the ratios R for two representative
matching conditions.

The simplest matching condition is the one for @i, [9]. The z dependence of the one-loop
contribution to the observable ¢ is shown on figure 1(a). The ratio R, is particularly simple since
there is only one subleading contribution, namely @y,

(1) (D) ~(1) ~(1)
(1) (2) =0 gat Drkin (61,62) ‘
(61,0,) = 20CD 2otat _ T2k + Byin (2) =o(6,6,)+B+7ylog(z) (3.4)

Oroen (@)~ O Briin(61.62) G

Using the fact that in the continuum m(L )a)km 1 we have (okm( )/ (I)lg?g =2m(L) a)lgllg (z). From
continuum HQET we know (see for example [2]) that reparametrization invariance fixes the renor-
malization factor for the kinetic operator to its classical value to all orders of perturbation theory.
This is true if the quark mass used to define @i, is given as the pole mass. In our computation we
use the m(L) mass, therefore a conversion factor needs to be included. The one-loop conversion
between the pole mass and the MS scheme can be taken for example from [12] where its 3-loop
version was derived, whereas the relation between the MS mass and the MS),; was given in [13].
Hence, we obtain the one-loop correction to wy, as

m(L)oll) (z) = —# - %0.122282 Cr + ﬁlogz, (3.5)

from which the parameters in Eq.(3.4) can be obtained, namely, B = 3n2 —0.122282 Cr and
Y= 27[2 The data shown on figure 1(b) exhibits a slope compatible with the predicted one. We can
also conclude that 1/z? corrections are equally small for all sets of 8 angles, hence the best setting
can be choosen by Monte Carlo precision and tree-level considerations.

Figure 1(d) shows the R ratio for the observable ¢4, where several terms contribute to the
sums on the right hand side of Eq.(3.3) and the 6-dependence of the coefficient of the logarithm
doesn’t cancel any more. Hence, a seperate fit was performed for each set of 0 angles. Again, one

concludes that all data lie on straight lines and therefore the 1/z* correction are indeed small.
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4. Conclusions

Lattice HQET is a prototype of an effective theory where one can perform a non-perturbative
matching. We have studied quantitatively the contamination of the matching conditions by 1/ mi
contributions and confirmed the tree-level conclusion that such corrections are negligible. The
ratios R introduced in Eq.3.3 proved to be useful as they provide a handle for the various parts of
the 1/my, contributions. Complete results for the remaining matching conditions will be presented
elsewhere [14].
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