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The study of the CKM matrix elements with increasing precision requires a reliable evaluation
of hadronic matrix elements of axial and vector currents which can be done with Lattice QCD.
The tiniest entry, |Vub|, can be estimated independently from B→ τν and B→ πlν decays. The
ALPHA collaboration has undertaken the effort to evaluate non-perturbatively the decay constant
fB and the f+(q) form factor for q2 close to q2

max entering these determinations. Since for the b
quark mb � a−1 for available lattice sizes, an effective description of the b quark is necessary.
HQET provides an example of the latter. As any effective theory, HQET is predictive only when a
set of parameters have been determined through a process called matching. The non-perturbative
matching procedure applied by the ALPHA collaboration consists of 19 matching conditions
needed to fix all the relevant parameters at order 1/mB of the HQET action and the axial and vector
currents. We present a study of one-loop corrections to two representative matching conditions.
Our results enable us to quantify the quality of the observables used in the matching procedure.
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Heavy Quark Effective Theory [1] in its basic formulation provides an effective description of
QCD with N f −1 light quarks and a single heavy quark whose mass is much larger than the QCD
energy scale ΛQCD . The heavy quark is treated non-relativistically and processes are described in
its reference frame. In order to avoid the ambiguities of the perturbative expansion of HQET in the
strong coupling g [2] one may employ non-perturbative techniques such as lattice QCD and con-
sequently lattice HQET [3]. As any effective theory HQET containes several low energy constants
which need to be determined in order to match it to QCD and grant it a predictive power. This
step called ’matching’ should also be performed non-perturbatively [4]. The ALPHA collaboration
has set up a non-perturbative matching strategy to determine the needed HQET parameters at order
1/mb [5, 6, 7]. It relies on a set of carefully chosen observables which are precisely computable in
lattice QCD as well as in lattice HQET. We describe the results of a one-loop computation which
tests the quality of some of these observables. In order to estimate the 1/m2

b contributions we
define a quantity R which measures the ratio of the one-loop corrections to their tree-level value
of 1/mb terms. The paper is organized as follows: in section 1 we introduce the lattice HQET
Lagrangian and the currents as well as higher dimensional operators needed to account for 1/mb

corrections, then in section 2 we briefly describe the framework in which the matching observables
are constructed and finally in section 3 we discuss the one-loop results and conclude.

1. HQET at next-to-leading order in mb

The formulation of lattice HQET was thoroughly discussed in [3] and therefore we only quote
the relevant formulae. The Lagrangian is a sum of the static part and two 1/mb corrections

LHQET = Lstat −
(

ωkinLkin +ωspinLspin

)
+O(1/m2

b), (1.1)

It is part of the definition of HQET that the kinetic and chromomagnetic operators enter only as
insertions in the static vacuum expectation values, namely for some operator O we have

〈O〉HQET = 〈O〉stat +ωkin ∑
x
〈OLkin(x)〉stat +ωspin ∑

x
〈OLspin(x)〉stat (1.2)

The HQET operators themselves are also expanded in 1/mb. For the axial current we have

(
A0

)
R = ZHQET

A0

{
ψ̄lγ0γ5ψh + cA0,1ψ̄l

1
2

γ5γi(∇
S
i −
←−
∇

S
i )ψh + cA0,2ψ̄l

1
2

γ5γi(∇
S
i +
←−
∇

S
i )ψh

}
,(

Ak
)

R = ZHQET
Ak

{
ψ̄lγkγ5ψh + cAk,1ψ̄l

1
2
(∇S

i −
←−
∇

S
i )γiγ5γkψh + cAk,2ψ̄l

1
2
(∇S

k−
←−
∇

S
k)γ5ψh

+ cAk,3ψ̄l
1
2
(∇S

i +
←−
∇

S
i )γiγ5γkψh + cAk,4ψ̄l

1
2
(∇S

k +
←−
∇

S
k)γ5ψh

}
,

and similarly for the vector current (we use the notation from Ref.[3]). ψl denotes a relativistic,
massless fermion, whereas ψh is a nonrelativistic heavy fermion. In order to define HQET and the
currents at the next-to-leading order one has to fix 3 parameters in LHQET and 2 × 3 parameters
in A0(x) and V0(x) and 2 × 5 in Ak(x) and Vk(x) giving in total 19 parameters. They are usualy
denoted collectively by ωi, with i = 1, . . . ,19. In this work we concentrate on the parameters ωkin

and cA0,1 and the corresponding matching conditions.
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2. How to determine the HQET parameters?

The HQET parameters are determined by considering observables φi which can be reliably
calculated in lattice QCD and in lattice HQET. The matching condition reads

φi,QCD (L,z,a = 0) !
= φi,HQET (L,z,a,{ω(z,a)}) = φi,stat (L,a)+φi j,1/m(L,a) ω j(z,a), (2.1)

where L is the size of the finite volume in which the observables φi are defined, a is the lattice
spacing and z is a dimensionless parameter used to fix the heavy quark mass m given by z = m̄(L)L,
where m̄(L) is the mass defined in the lattice minimal subtraction scheme [8]. In Ref.[9] it was
proposed to use observables defined in the Schrödinger functional framework which differs from
the usual one by the boundary conditions that are imposed on the fields at time 0 and T (for a
more detailed discussion of the Schrödinger functional framework see [8]). Apart from the usual
fields in the bulk one has boundary fields which can be used to construct correlation functions. The
observables analyzed in this work are constructed from boundary-to-boundary or boundary-to-bulk
correlation functions, e.g.

F1(θ) =−
a12

2L6 ∑
u,v,y,z

〈ζ̄ ′l (u)γ5ζ
′
h(v)ζ̄h(y)γ5ζl(z)〉, (2.2)

K1(θ) =−
a12

6L6 ∑
i

∑
u,v,y,z

〈ζ̄ ′l (u)γiζ
′
h(v)ζ̄h(y)γiζl(z)〉, (2.3)

fA0(θ ,x0) =−
a6

2 ∑
u,v
〈ζ̄h(u)γ5ζl(v)

(
A0

)
I(x0)〉 (2.4)

where ζ and ζ̄ denote fermionic fields living on the boundary. The θ angles are additional kine-
matic parameters corresponding to the momenta of quark fields in the bulk. The observables are
defined in such a way as to cancel all renormalization factors and the angles can be tuned such as
to minimize cut-off effects [9]

φ2(θ1,θ2) =
1
4

log
F1(θ1)

F1(θ2)
+

3
4

log
K1(θ1)

K1(θ2)
, φ4(θ1,θ2) = log

fA0(θ1,x0 = T/2)
fA0(θ2,x0 = T/2)

. (2.5)

In Ref.[9] the proposed set of matching conditions was solved at tree-level yielding the clas-
sical HQET parameters and it was checked that the 1/m2

b corrections are small. The purpose of
the present study is to confirm these conclusions by a one-loop computation similar to the one
performed in [10].

The one-loop contributions to the observables Eq.(2.5) were calculated with pastor, an auto-
matic tool for generation and calculation of lattice Feynman diagrams [11]. It is a flexible package,
which takes as input the discretized action, the definition of the correlation function, and parameters
such as L/a and the dimensionless heavy quark mass z. Then, pastor automatically generates
the Feynman rules corresponding to the specified action, all Feynman diagrams corresponding to
the requested correlation function and a numerical contribution of each diagram. The calculations
were performed for the Wilson plaquette gauge action and O(a)-improved Wilson fermions with
two light quarks and one massive. One-loop contributions were evaluated for φi,QCD and φi,stat .
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Figure 1: Results for φ2 (up) and φ4 (down). Figures on the left present the z dependence of the one-loop
contributions to QCD observables together with their static limit. For the fits we used the functional ansatz
with two free parameters fi and gi: φ

(1)
i,QCD (z) = φ

(1)
i,stat + fi/z+ gi log(z)/z. Figures on the right show the

corresponding R ratios. Fits were performed using data on the left of the vertical solid line.

3. How to estimate the quality of the observables?

To analyze the 1/z2 corrections to an observable φ at one-loop order in the coupling constant
we expand the matching condition Eq.(2.1) in g2 and get (dropping terms of order g4 and 1/z2)

φ
(0)
QCD (z)+g2

φ
(1)
QCD (z) = φ

(0)
stat +g2

φ
(1)
stat + z−1

∑
t

(
ω̂

(0)
t φ̂

(0)
t +g2

ω̂
(1)
t (z)φ̂ (0)

t +g2
ω̂

(0)
t φ̂

(1)
t

)
(3.1)

where the sum over t refers to different subleading contributions. The parameters ω̂t differ from
the HQET parameters in Eq.(2.1) by an explicit factor 1/m̄(L) which was factored out, whereas φ̂t

have an explicit factor L. In this notation the kinetic contribution is ω̂
(0)
kin = 1

2 , the spin contribution

vanishes at tree level (φ (0)
spin = 0), and the remaining contributions correspond to corrections to the

current operators proportional to the coefficients cX . To quantify the 1/z2 corrections we define a
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ration R by extracting the one-loop contribution from Eq.(3.1) by dividing by (φ
(0)
QCD (z)−φ

(0)
stat )g2

R(θ1,θ2) =
φ
(1)
QCD (z)−φ

(1)
stat

φ
(0)
QCD (z)−φ

(0)
stat

=
∑t ω̂

(0)
t φ̂

(1)
t (θ1,θ2)

∑t ω̂
(0)
t φ̂

(0)
t (θ1,θ2)

+
∑t ω̂

(1)
t (z)φ̂ (0)

t (θ1,θ2)

∑t ω̂
(0)
t φ̂

(0)
t (θ1,θ2)

(3.2)

= α(θ1,θ2)+β (θ1,θ2)+ γ(θ1,θ2) log(z) (3.3)

Since the left hand side of Eq.(3.3) has a well defined continuum limit, the right hand side can
be also considered in the continuum (the right hand side of Eq.(3.3) must be considered as a
entity since the particular terms in the sum may be divergent as a→ 0). Note that the explicit
1/z-dependence cancels. The only z dependence remains in ω̂

(1)
t (z) and can be parametrized as

ω̂
(1)
t (z) = βt + γt log(z). Hence, when R is plotted on a linear-log plot, the ratio R measures simul-

taneously:

• 1/z2 corrections: deviations from a linear behaviour signal 1/z2 contributions,

• slope: the coefficient of the subleading logarithm.

The slope gives information about a specific linear combination of the anomalous dimensions of
the 1/mb operators, which at one-loop order are universal (independent of the scheme) and in
some cases can be predicted analytically. We will now present the ratios R for two representative
matching conditions.

The simplest matching condition is the one for ωkin [9]. The z dependence of the one-loop
contribution to the observable φ2 is shown on figure 1(a). The ratio R2 is particularly simple since
there is only one subleading contribution, namely ω̂kin ,

R2(θ1,θ2)≡
φ
(1)
2,QCD (z)−φ

(1)
2,stat

φ
(0)
2,QCD (z)−φ

(0)
2,stat

=
φ̂
(1)
2,kin (θ1,θ2)

φ̂
(0)
2,kin (θ1,θ2)

+
ω̂

(1)
kin (z)

ω̂
(0)
kin

= α(θ1,θ2)+β + γ log(z) (3.4)

Using the fact that in the continuum m̄(L)ω(0)
kin = 1

2 we have ω̂
(1)
kin (z)/ω̂

(0)
kin = 2m̄(L)ω(1)

kin (z). From
continuum HQET we know (see for example [2]) that reparametrization invariance fixes the renor-
malization factor for the kinetic operator to its classical value to all orders of perturbation theory.
This is true if the quark mass used to define ωkin is given as the pole mass. In our computation we
use the m̄(L) mass, therefore a conversion factor needs to be included. The one-loop conversion
between the pole mass and the MS scheme can be taken for example from [12] where its 3-loop
version was derived, whereas the relation between the MS mass and the MSlat was given in [13].
Hence, we obtain the one-loop correction to ωkin as

m̄(L)ω(1)
kin (z) =−

1
6π2 −

1
2

0.122282 CF +
1

4π2 logz, (3.5)

from which the parameters in Eq.(3.4) can be obtained, namely, β = − 1
3π2 − 0.122282 CF and

γ = 1
2π2 . The data shown on figure 1(b) exhibits a slope compatible with the predicted one. We can

also conclude that 1/z2 corrections are equally small for all sets of θ angles, hence the best setting
can be choosen by Monte Carlo precision and tree-level considerations.

Figure 1(d) shows the R ratio for the observable φ4, where several terms contribute to the
sums on the right hand side of Eq.(3.3) and the θ -dependence of the coefficient of the logarithm
doesn’t cancel any more. Hence, a seperate fit was performed for each set of θ angles. Again, one
concludes that all data lie on straight lines and therefore the 1/z2 correction are indeed small.
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4. Conclusions

Lattice HQET is a prototype of an effective theory where one can perform a non-perturbative
matching. We have studied quantitatively the contamination of the matching conditions by 1/m2

b
contributions and confirmed the tree-level conclusion that such corrections are negligible. The
ratios R introduced in Eq.3.3 proved to be usefull as they provide a handle for the various parts of
the 1/mb contributions. Complete results for the remaining matching conditions will be presented
elsewhere [14].
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