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1. Introduction

Collinear factorization provides today an amazingly accurate description of the proton struc-
ture function F2(x,Q2), which has been measured with high accuracy at the HERA experiments
[1] at DESY. Here x denotes the momentum fraction carried by the struck parton and Q2 the reso-
lution scale set by the momentum transfer squared. Within collinear factorization this observable
is described as a convolution of perturbatively calculable Wilson coefficients and scale-dependent
quark and gluon distribution functions fi(x,µ2

f ), i= q, q̄,g, where the latter are obtained from global
QCD fits [2]. µ f denotes the factorization scale, which is generally of order of magnitude of Q. It
is a direct consequence of the formulation of factorization, where it serves to separate hard from
soft momenta. Independence of physical observables of the factorization scale can then be used
to derive powerful renormalization group equations, known as the DGLAP equations, which de-
scribe the scale dependence of parton distribution functions. Furthermore, since factorization can
be carried out in infinitely many different ways, one is left with an additional choice of the factor-
ization scheme for which one usually adopts the MS prescription. Quark and gluon distributions
are therefore not physical observables, but a theory definitions.

Despite the success of collinear factorization there exists strong theoretical arguments that at
sufficiently small momentum fractions x, deviations from DGLAP should manifest themselves in
the data, driven by linear BFKL and/or its non-linear extensions such as BK-evolution. The study
of this kinematic regime is also one of the main physics goals of a future electron-ion collider, such
as the proposed EIC [3] and LHeC [4] projects. While successful descriptions of the HERA data at
small x already exist, which use either next-to-leading order (NLO) BFKL resummation, see e.g.
[5] or running coupling BK evolution, see e.g. [6], the same set of data is equally well described by
DGLAP driven fits of parton distribution functions (pdfs) and no definite conclusion can be drawn.

Indeed, a direct manifestation of deviations from DGLAP evolutions is rather hard to achieve
through a fits of parton distribution functions: given the usually limited range of Q2 values at small
x, combined with theoretical ambiguities due factorization scale and scheme choice and the rather
large number of free parameters of initial pdfs renders this a very difficult task.

These problems can be however if circumvented if instead of the dependence of pdfs on the
factorization scale, the dependence of structure functions themselves w.r.t the proton virtually is
studied. This leads to the concept of physical anomalous dimensions [7, 8, 9, 10], which govern, in
close analogy to the DGLAP anomalous dimensions, the evolution of structure functions. As they
evolve directly physical observables, they are observables themselves and carry therefore neither
scheme nor factorization scale dependence. In addition, analysis of DIS data requires in this case
only a parametrization of structure functions, instead of an complete set of parton distribution
functions, which allows to probe DGLAP evolution more efficiently. In the following we give
some details on DGLAP evolution in terms of physical anomalous dimensions and first numerical
results. For details we refer to the paper in preparation [11].

2. Physical evolution kernel

To define physical anomalous dimensions it is necessary to express convolutions in Bjorken x
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space as products of their Mellin transforms defined as

a(n)≡
∫ 1

0
dxxn−1a(x). (2.1)

Within collinear factorization, the Mellin transforms of DIS structure functions FI(x,Q2) are then
given by

FI(n,Q2) = ∑
k

CI,k

(
n,αs(µ

2),
Q2

µ2

)
fk

(
n,αs(µ

2),
µ2

Q2
0

)
, (2.2)

where the sum runs over all contributing quark flavors and the gluon, each represented by a pdf fk.
The coefficient functions CI,k can be calculated within perturbative QCD [7, 12, 13, 14] and exhibit
the following expansion in αs

CI,k

(
n,αs(µ

2),
Q2

µ2

)
= ∑

m=0

(
αs(µ

2)

4π

)m0+m

C(m)
I,k (n) , (2.3)

where m0 depends on the first non-vanishing order in αs in the expansion for the observable under
consideration, e.g., m0 = 0 for F2 and m0 = 1 for FL. The pdfs fk(n,µ2) obey the DGLAP evolution
equations which read

d fk(n,µ2)

d ln µ2 = ∑
l

Pkl(n,αs(µ
2),

Q2

µ2 ) fl(n,µ2) (2.4)

where the l→ k splitting functions have a similar expansion [15, 16, 17] as the coefficient functions
in Eq. (2.3):

Pkl(n,αs(µ
2)) = ∑

m=0

(
αs(µ

2)

4π

)1+m

P(m)
kl (n) . (2.5)

The DGLAP evolution equation can then be formulated as n f − 1 evolution equations for the dif-
ferent non-singlet quark flavor combinations and a 2× 2 matrix valued evolution equation, which
evolves the flavor singlet vector (Σ,g). Here g(n,µ2) denotes the gluon distribution and

Σ(n,µ2) =
n f

∑
f

[
q f (n,µ2)+ q̄ f (n,µ2)

]
(2.6)

the quark flavor singlet. The strong coupling itself obeys the following renormalization group
equation, governed by the QCD beta function.

dαs(µ)

d ln µ2 = 4πβ (as) =−αs ∑
m

(
αs

4π

)m+1
βm (2.7)

with β0 = 11−2n f /3 and β1 = 102−38n f /3 up to NLO accuracy. To formulate evolution in terms
of physical anomalous dimensions we first restrict ourselves to the small x region where gluon and
seaquark distribution dominate and the latter is well approximated by the flavor singlet Eq. (2.6).
It is then possible to reexpress the flavor singlet doublet (Σ,g) through the doublet of structure
functions (F2,FL). To this end we define, following [9], a rescaled version of the structure function
FL

F̃L(n,Q2) = 4π
FL(n,Q2)

αs(Q2)C(1)
Lq (n)

(2.8)
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which leads to a doublet F(n,Q2) = (F2, F̃L). Note that the coefficient function C(1)
Lq (n) is does

not depend on the factorization scheme and therefore no scheme dependence is introduced through
this rescaling. To define physical evolution kernels we introduce coefficient and evolution kernel
matrices for the doublet F(n,Q2),

C =

(
C2q C2g

CL̃q CL̃g

)
P =

(
Pqq Pqg

Pgq Pgg

)
(2.9)

and consider

dF(n,Q2)

d lnQ2 =

(
4πβ

dC
dαs

C−1 +C ·P ·C−1
)

F. (2.10)

This yields physical evolution kernels as

K =

(
β

dC
das

C−1 +C ·P ·C−1
)
. (2.11)

At LO one obtains

K
(0)

22 = P(0)
qq −

C(1)
Lq P(0)

qg

C(1)
Lg

K
(0)

2L =
C(1)

Lq P(0)
qg

C(1)
Lg

K
(0)

L2 =
C(1)

Lg P(0)
gq

C(1)
Lq

−
C(1)

Lq P(0)
qg

C(1)
Lg

−P(0)
gg +P(0)

qq K
(0)

LL =
C(1)

Lq P(0)
qg

C(1)
Lg

+P(0)
gg (2.12)

for the NLO kernels we refer for this particular convention to the paper in preparation [11].

3. Numerical analysis

In this section we provide some first numerical results, where we compare an implementation
of physical anomalous dimensions against DGLAP evolution of parton distribution functions. To
this end we construct structure functions F2 and FL from a set of toy pdfs, for which we use the
default input of the evolution code PEGASUS [18], taken at an initial scale Q2

0 = 2GeV2 with
αs(Q2

0) = 0.35.
The evolution equations, which we treat at NLO accuracy, are solved analytically, as provided

e.g. by Eq. (2.32) of [18]. For details we refer to [11]. While we find exact agreement between
evolution of structure functions through physical anomalous dimensions and evolution of pdfs at
leading order, there exist sizeable deviations at next-to-leading order. They can be traced to the
evaluation of coefficient functions at initial scale Q0 (physical anomalous dimensions) and final
scale Q (pdf style evolution). For a detailed discussion and an extensive analysis we refer the
reader to [11].
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Figure 1: The doublet (F2,FL) at Q2 = 10GeV2 (first line) and Q2 = 100GeV2 (second line). Straight orange
lines denote evolution with physical kernels, while dotted blue lines denotes pdf style evolution.
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