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1. Introduction

Double parton distribution functions (DPDFs) are used in the description of double hard scat-
tering. Their QCD evolution equations are known in the leading logarithmic approximation (LLA).
The DPDFs obey nontrivial sum rules which are conserved by the evolution equations. The prob-
lem we address is how to specify initial conditions for the evolution equations which obey these
sum rules. Basic articles on double parton distributions are [, B, B, &, B, B, O].

2. Parton distribution functions

In the single parton scattering (SPS), the final state of the hadron-hadron collision has been
produced from only one hard interaction while in the double parton scattering, two hard sub-
processes occur. For the description of the SPS we use the single parton distribution functions,
Dy(x,Q), while for the double parton scattering - the double parton distribution functions denoted
by Dy, ,(x1,Xx2,01,02). The DPDF depend on two parton flavours fi, f> (including gluon), two
parton momentum fractions x,x; and two hard scales Q,Q>. The two parton momentum frac-
tions obey the condition saying that the sum of partons’ momenta cannot exceed the total nucleon
momentum,

X14+x <1. 2.1)

3. Evolution equations

The general form of QCD evolution equations for single PDF is given by
1
9Dy (x.1) :Z/O du Ky (x,u,0) Dy (1), 3.1)
f/

with the evolution parameter t = In(Q?/ Q%). The integral kernels % presented in above equation
describe real and virtual parton emission. The real emission kernels take the following form

1 X
Ji?R/(x,u,t) = ;Pff/(;,t) 0(u—x) (3.2)

in which Py are splitting functions computed perturbatively in QCD in powers of the strong
coulpling constant o:

s( 2 (1
Prpi(z,1) = O;Et)P}j’f? () + f‘z;)gP}}?(z) .. (3.3)

After including the splitting functions, we find the well known DGLAP evolution equations for the
single PDFs:

ld 1
aDs(x1) =Y / Ep o (e)Dp(E) = Dy(xt) ¥ / dezPpy(z.1). (3.4)
f x < Z Iz 0
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In the leading logarithmic approximation, the evolution equations of the DPDFs (for equal two
hard scales, Q1 = 0>, = Q) have the following form

1—x
ath]fz(xl,XQ,l‘) = Z/O dujfflf/(xl,u,t)Df/fz(u,xz,t)

—X1

+ Z/ du 5, (x2,u,t) Dy, pr(x1,1,1)

+ Z%/%flfz(xl,xl —I—xz,t)Df/(xl —I—XQ,I). 3.5)
f/

The upper integration limits reflect the condition (Z1). The third term constains the single PDFs
and because of that eqs. (B3) and (BI) have to be solved together. That is why the initial conditions
for both the double and single PDFs have to be specified at some initial scale Q.

4. Sum rules

The DGLAP evolution equations preserve the momentum sum rule for the single PDFs:

1
Z/ dxxDy(x,0) = 1. 4.1)
7 /0
By analogy, one finds the momentum sum rule for the DPDF
e Dpp(n,Q)
f1./2\ M5 A2,
dxyx) ——=———"="=(1—x). 4.2)
r Dy,(2.0)

The ratio of the double and single PDFs in the above is conditional probability to find a parton with
the momentum fraction x;, while the second parton characteristics are fixed. It is clearly seen that
the new momentum sum rule relates the double and single PDFs

1—x»
Z/() dx1x1 Dflfz(xl,xz,Q) = (l—xz)sz(xg,Q). (4.3)
The valence number sum rule for the single quark distributions has the well known form

1
/0 dx{Dyg,(x,0) — Dg,(x,Q)} =N.. 4.4)

For the DPDFs, one finds a similar relation with three cases for each value of the second parton
flavour [B]

N;Dy,(x2,0) for f> # qi,gi
1—x
/0 dxi {Dy,, (x1,%2,0) = Dgiy (x1,%2,0) } = ¢ (Ni—=1)Dp,(x2,Q)  for fr=¢q;  (4.5)

(Ni+1)Dp(x2,0) for fo=4g;

It is important to emphasize once more that the momentum and the valence number sum rules are
conserved by the evolution equations once they are imposed at the initial scale.
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5. Initial conditions

In order to solve the evolution equations we need to specify initial conditions. For practical
reason, their form is to built out of the existing single PDFs. For example, the symmetric input
[@, B] is built out of the two single PDFs and some correlation factor:

(1 — X1 —XQ)Z
Dy 1, (x1,x2) = Dy, (x1) Dy, (x2) (1—x1)2+m (1 —xp)24m G.D

This input is symmetric under the parton interchange, Dy, 5, (x1 ,X2) =D £ (¥2,x1), and also posi-
tive definite (if single PDFs are). However, this input violates the sum valence number rules. The
graphical ilustration of the sum rule violation by the symmetric input is shown below by plotting
the ratio of the r.h.s. to L.h.s. for the sum rules (EE3) and (E3).

Momentum rule

Valence number rule
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How to exacly fulfill those sum rules? In order to obey the momentum sum rule we could use

the asymmetric ansatz:

1 X1
Dfl(l _

Dflfz(x1>x2) = x2)'Df2(x2)' (5.2)

1—XQ

To fulfill the valence number sum rule we need to introduce corrections for identical quark flavours
and antiflavours

1
Dﬁﬁ(x17x2):1_x2 Dy, (

o 1 X1 1 )
Dfl,fi(xla-XZ)_l_xz {Dfl(l—x2)+2}Dfl(xz) (5.3)

It is important that those corrections do not spoil the momentum sum rule. However, the DPDFs
for identical flavours are not generally positive definite because of the factor —1/2 . This is the
price to pay for the construction with single PDFs.
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The graphical comparison of the symmetric and asymmetric inputs is shown below.

_ -3
D,,(X1, X,=107)
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For the distributions D,,, both inputs give similar results in the small x; region, while for large x|
there are differences between them because of the lack of positive definitness of the asymmetric
input. The same results are found for the evolved distribution.

For D,;, both distributions are positive but there are differences between them at the large x;:
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And finally, for the D,, distributions both inputs give the same results in the whole x; domain.

Dy, (X1 X,=107%)

6. Summary

The specification of the initial conditions for evolution of the DPDFs is not simple. The sym-
metric input gives parton symmetry and positivity, but does not exactly fulfill sum rules. In the other
hand, the asymmetric input obeys them exactly, but is not positive definite. There is also an alter-
native solution: we could specify positive initial double distributions and then generate the single
PDF using sum rules. However, at present time, there is no experimental knowledge of the DPDF.
For small parton momentum fractions, the factorized form Dy, 1, (x1,x2,0) = Dy, (x1,Q) Dy, (x2,0)
is a good approximation, however, the problem occurs for large x values (> 1072).
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