OF SCIENCE

Standard and quasi-conformal BFKL kernels

V.S. Fadin*

Budker Institute of Nuclear Physics of SD RAS, 630090 Novosibirsk Russia
and

Novosibirsk State University, 630090 Novosibirsk, Russia

E-mail: f adi n@ np. nsk. su

The ambiguity of the NLO BFKL kernels in consequence of thegaility to rearrange radiative
corrections to scattering amplitudes between the impatbfs and the Green functions permits
to write the kernels for the singlet and adjoint represémtatof the gauge group in the quasi-
conformal appearance, i.e. in the form where conformalriawae is violated only by running
coupling. The differences between standard and quasbowmaf kernels in the momentum space
are found.

XXI International Workshop on Deep-Inelastic Scattering and Related Subject -DIS2013,
22-26 April 2013
Marseilles,France

*Speaker.

TWork supported in part by the Ministry of Education and Sceeiof Russian Federation and in part by RFBR,
grant 13-02-01023.

(© Copyright owned by the author(s) under the terms of the @e&ommons Attribution-NonCommercial-ShareAlike Licen http://pos.sissa.it/



Sandard and quasi-conformal BFKL kernels V.S. Fadin

1. Introduction

The BFKL (Balitsky-Fadin-Kuraev-Lipatov) approach [1]desl on the remarkable property
of non-Abelian gauge theories — reggeization of gauge lmg$gluons) — is applicable for all
possible representations of the gauge (colour) group int thehannel. Now the kernel of the
BFKL equation is known in the next-to-leading order (NLO}lodor forward scattering, i.e. for
t = 0 and the colour singlet in thechannel [2], and for arbitrartyand any possible colour state in
thet— channel [3].

For phenomenological applications, the most interessrige Pomeron (colour singlet) chan-
nel. But the adjoint representation is not less importardr t#wo reggeized gluons the adjoint
representation can be of two different types, symmetricaricsymmetric ones. In fact, antisym-
metric adjoint representation is even more important, tharsinglet one, first of all because of the
gluon reggeization. The idea of the gluon reggeization aggzkas the result of the fixed order cal-
culations. Evidently it must be proved. It can be done [4hgdiootstrap relations, which follow
from the requirement of compatibility of the multi-Reggerfoof amplitudes with thes-channel
unitarity. Now fulfillment of these relations is proved irethLO (see [5] and references therein).

But there are at least two other reasons for significanceeoftijoint representations. One
is related to the BKP (Bartels-Kwiecinski-Praszalowicguation [6] — the generalization of the
BFKL equation to bound states consisting of three and maygeieed gluons, in particular the
C-odd three gluon system — Odderon. The BFKL kernel for syinmeadjoint representation
appears in the BKP equation for the odderon because anyfghae three reggeized gluons are in
the colour octet state. Lately, the kernel of the BKP equatvas found in the NLO [7].

Recently, another application of the BFKL approach, cotetbwith the BDS (Bern-Dixon-
Smirnov) ansatz [8] for amplitudes with maximal helicityolation in Yang-Mills theories with
extended supersymmetril & 4 SYM) at large number of coloud. was extensively developed
[9]. The approach was used for verification of the BDS ansatarfelastic amplitudes and cal-
culation of the remainder factor. It was demonstrated thatBDS amplitudeMEP$ should be
multiplied by the factor containing the contribution of thtandelstam cuts, and this contribution
was found in the LLA[9] and in the NLA [10]. Note that at laryg, when only planar diagrams are
taken into account, there is the signature degeneracyhéeee is no difference between symmetric
ant antisymmetric adjoint representations. In the follmyialking about the adjoint representation
we will will assume just this case.

In the leading order (LO) the kernels of the BFKL equationtfa singlet and the adjoint rep-
resentations of the gauge group have the remarkable pyopkith is named by the same word —
conformal invariance, although its meaning is differemttidferent representations: in the first case
it means invariance with respect to the Mébius transforomatiin the space of transverse coordi-
nates, whereas in the second case — in the space of transvarsenta. In the NLO the conformal
invariance is violated by running coupling. It is naturalthink that the NLO kernels are quasi-
conformal, i.e. their conformal invariance is violatedyhy terms proportional to thg function.
But the kernels defined according to [11] (we call them stadidare not quasi-conformal. How-
ever, it does not mean that there are another origins oftidgolaf conformal invariance besides
the running coupling. The reason is that NLO kernels areraeh@ependent because of the pos-
sibility to rearrange radiative corrections to scatter@mgplitudes in the BFKL approach between
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the impact factors and the kernels.

For the singlet kernel, it was shown [12] that this ambigyigymits to write the kernel in the
guasi-conformal appearance. It turned out that in the itnpa@meter space the quasi-conformal
kernel is extremely simple compared with the standard oséei in the form where conformal
invariance is violated only by running coupling. In the n&dction we discuss the difference
between two forms of this kernel.

For the kernel in the adjoint representation, it was betieusit not proved, that afl = 4
SYM at largeN; it can be written in a conformal invariant form. In the Seot®we demonstrate
that indeed the standard kernel can be reduced to the caalfangariant one by the similarity
transformation.

2. Colour singlet kernel

For scattering of colourless objects, due to gauge inveeiar the impact factors, the BFKL
equation can be written in the Mdbius invariant form [13]this form the BFKL kernel acts in the
space of functions turning into zero at coinciding transeecoordinates. The Mdbius invariance
of the LO BFKL kernel can be made evident by transformatiamfthe transverse momentum to
the transverse coordinate representation [14].

The Mobius form obtained by transformation of the standatdDNkernel [11] into impact
parameter space turned out not quasi-conformal[15]. Buathbiguity of NLO kernels , analogous
to the well known ambiguity of the NLO anomalous dimensigresmits to make transformations

K—K—asK® U]. (2.1)

Using this transformation it turns out possible to reduae MVbius form to the quasi-conformal
shape [12], which is immeasurably simple compared with taadard kernel in the momentum
space.

Especially simpleitis al =4 SYM:

(F1F2| A4 [FITS)N=a

_ach/ | T12?

“2r | Prarg

asN:{ (2
X [5(?11, )0(T2p) + 6(T1p)d(T22) — 5(?11,)5(@2)] (1— %?)
f"122’ ?221/ 72 ?122?12’ 2
+052N§ " <?121/7222 ( ?i'z _ r%z) + "i2ln T2 Vo
amt | 2r5, 75, \TRTH —THlsh Tiy 3T 55Ty
+61° (3) 8(F11)d(r22)] (2.2)

In fact, there are three reasons for the simplicity:

— Mobius representation (i.e. limitation of space of states
— transformatiork — K — ag[KB,U],

— use of impact parameter space.



Sandard and quasi-conformal BFKL kernels V.S. Fadin

The simplicity of the Mébius form of the quasi-conformal NIBFKL kernel suggested to use
just this form for finding the kernel in the momentum spacee Way to do that was not evident,
and even the possibility to do it seemed doubtful, becausdfiibius form is defined on a special
class of functions in the coordinate space. However, it iaagva [16] that such possibility exists
due to the gauge invariance of the kernel, and the way torobitaikernel in the momentum space
from its Mobius form was elaborated. But technically obitagrit turned out to be not easy. Instead,
the difference between the standard and the quasi-conf@Ri€l kernels was found [17].

An explicit form of the operatod in the momentum space [16]

asfo
8m

(6,00, 6) = 3(Thy + Gz ) DRy (A, G2 K) —

477

In (62d2) 5(d1r)d(th2) .  (2.3)

where[3y is the first coefficient of the Gell-Mann—Low function,

Bo= %Nc— énf
and q/2q q/Zq q/Z
1705 P 1
Ru(d1,0; k) = P n<k2q2>+d2 n<k2q2> ( >
auk ;2 dok q o | (4
- R21c-112 In<k2> k2q2| (R_22> GEGZ (4 ) ' 4

Note thatR, has the gauge invariance properties:

Ru(G1,0; 1) = Ru(G1,0; —Gp) =
(G207Ru(T1, G2; K)) g0 = (G202Ry (T, G2;K) )| gm0 =0 - (2.5)

Indeed, these properties are required to conserve the gawg@ance.
The difference between the standard and the quasi-conffdwen@els turned out to be rather
simple
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where Ly pz
" X
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The most natural conclusion is that the simplicity of the lidtform of the quasi-conformal kernel
is caused mainly by using the impact parameter space. Thee ptssibility is that the quasi-
conformal kernel can be written in simple form also in thex¢igerse momentum space. If this is
true, the standard kernel could result itself in a much semfarm.
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3. Adjoint representation kernel

For calculation of high-energy asymptotic of the remaindection, the modified (with sub-
tracted gluon trajectory depending on tatadhannel momenta) BFKL kernel in the adjoint rep-
resentation is used. Assuming that this kernel can be writtehe form, which is invariant with
respect to the Mobius transformations in the momentum splaeeigenfunctions and eigenvalues
of the kernel were found in [10]. The conformal invariantrkgris completely determined by these
eigenfunctions and eigenvalues. It takes the form [18]:

asN aZN2 aZN?2
Ke(th, 01:0) =KB(2) (1- 5—2(2) | + 8P (1-2) =523 (3) + -3 £ R(2), (3.1)
21T 41712 3218
where
g ONe (242 5 opdl 141
K (z)_—87T2 <7|1—z|2 0“9/ (1-2 -1 ) (3.2)
(1 14|72 22 1-|7? o [1-2*
R(z) = <2 -2 In<|z| =77 In|z*In Fe
1 1 1 dx |22
+<—1_Z——1_Z*>(z—z*) o2 (3.3)

z= 10 /002, P= pPx+ipy andp* = px—ipy for any two-dimensional vectqs = (px,ipy). If we
denote

aZN?
K (G, 3 0) — Ke(G, 0 ) = 2 S0, (3.4)
then q 42 2 o2
A0, 01;d) = qlz q22+|n q’2 In q’2 —I—In 1 |nq2
WGP af | | dPas? - afy? ( af, d B, )
kzqz ]/-2 /2 quz q’2 q2 q’2 qZ

qu&z (K2l » o) — 62K x o) — 2K x e ) ([ % Gellgy o — [0 % Wellggqg) . (35)
wherek = q; — d; = d, —do. Important properties ol are its symmetries with respect to the
exchangesi; < —0p, 0] < —0; andd; < —@, as well as the gauge invariance (vanishing at zero
momentum of each reggeon), which are easily seen from tpigsentation.

If the kernelsK andK; coincide in the leading order and are connected by a sirtyilaens-
formation, there must exist an opera(ﬁsatisfying the commutation relation

KB, O] = (%ST)Z%TA. (3.6)

It was shown [18] that indeed such operator exists and itkagximrm was found:
sB asNc q12q2/ 2t qll ZQ22 a2 q12q22
6y = [In (qlqz) A ] 16"2( = 42)In T0z) 3.7)

It means that indeed the modified BFKL kernel in the adjoipresentation of the gauge group at
N =4 SYM can be written in the conformal invariant form.
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