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1. Introduction

While perturbative calculations are widely used in quanfietd theory, their summation is
always a formidable task, unreachable but in the simplegtiansay most simplistic, occurences.
From elementary particle to atomic and to solid state plsysEsummation techniques have been
developped to go beyond a fixed order perturbation estinmateigh the sampling and evalua-
tion of an infinite class of diagrams shown to dominate in d@téchkinematical region for some
given observables. The result of such procedures is oftexponentiated factor as in the famous
Sudakov case [1], exp-Kg?log®z), whereg is the coupling constant aralis the ratio of two
different characteristic scales, which governs both QE® @D calculations of exclusive form
factors. Here we obtain for a specific case of exclusive egatf amplitude a resummed result of
the form cosliKglogz) wherezis a momentum fraction. To our knowledge, this form nevevipre
ously emerged in field theoretic calculations. The prodeatwe focus on is the most studied case
of a class of reactions - exclusive hard hadronic procesgdsch are under intense experimental
investigation. The result presented here provides an itapbstepping-stone for further develop-
ments enabling a consistent extraction of the quantitissriténg the 3-dimensional structure of
the proton.

In the collinear factorization framework the scatteringpditnde for exclusive processes such
as deeply virtual Compton scattering (DVCS) has been sh@pmo[factorize in specific kine-
matical regions, provided a large scale controls the sé@paraf short distance dominated par-
tonic subprocesses and long distance hadronic matrix eksnibe generalized parton distributions
(GPDs) [3]. The amplitude for the DVCS process

Y (QN(p) = v(d)N'(p), (1.1)

with a large virtualityg? = —Q?, factorizes in terms of perturbatively calculable coeffittifunc-
tionsC(x,&,as) and GPDH (x,&,t), where the scaling variable in the generalized Bjorkentlimi
is the skewnes$ defined asf = m The calculation of first order perturbative correc-
tions to the partonic amplitude has shown that terms of o'?@%ff—x) play an important role in the
region of small(x+ &) i.e. in the vicinity of the boundary between the domains ethee QCD
evolution equations of GPDs take distinct forms (the séedaERBL and DGLAP domains). We
scrutinize these regions and demonstrate that they arendtedi by soft fermion and gluon propa-
gation. This explains why they can be exponentiated usiagiegikonal techniques. The present
report is a short version of Ref. [4], with a few investigasoof phenomenological issues added.

2. Full analysis

2.1 Lessonsfrom the DVCSamplitudeat NLO.

Let us begin with the discussion of the NLO corrections tcatmplitude for DVCS (1.1). After
proper renormalization, the quark contribution to the sytria part of the factorized Compton
scattering amplitude reads

at =g’ / lldx[n%FTq(x)Hq(x,f,t)] : (2.1)
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where the quark coefficient functiorf reads [5]

TO-CE+ ClClhlog . 22)

Ci=6; (ﬁ — (x— —x)> : (2.3)

<ﬁ:mé%fim{mffgxqa_9
_3§;§bg<igx—m>}—(X%—%) (2.4)

The first (resp. second) terms in Egs. (2.3) and (2.4) cooresto thes—channel (respu—channel)
class of diagrams. One goes from thechannel to th&i—channel by the interchange of the photon
attachments. Since these two contributions are obtairmed éme another by a simpl& & —X)
interchange, we now restrict mostly to the discussion ofdhener class of diagrams.

2.2 Main steps of our analysis

We start our analysis with the observation that in the sanré sag for evolution equations,
the extraction of the soft-collinear singularities whiatmainate the amplitude in the linit— £¢&
is made easier if one uses the light-like gaume A = 0 with p; = . We argue that in this
gauge the amplitude is dominated by ladder-like diagrames,F3g. 1. In our analysis we expand
any momentum in the Sudakov bagis py, ask = a p1 + 3 p2 + k., whereps is the light-cone
direction of the two incoming and outgoing partomg & p3 = 0, 2p; - p = s= Q?/2¢&). In this
basis,qy = p1— 2 p2.

We now restrict our study to the limit— +¢&. The dominant kinematics is given by a strong
ordering both in longitudinal and transverse momenta, raliicg to

X~ &> | ~ [X= &[> [X—= &+ Ba| ~ |Be| > -

o> X=&+ P+ Bo+ -+ Baot| ~ Bl (2.5)
K24 < Ko < < [KE | < s~ QP (2.6)
lon| < - < |og| < 1. (2.7)

This ordering is related to the fact that the dominant doubdgrithmic contribution for each
loop arises from the region of phase space where both softallidear singularities manifest
themselves. Wher — & the left fermionic line is a hard line, from which the gluorre @mitted
in an eikonal way (which means that these gluons have thdimwalcomponents neglected in the
vertex w.r.t. the momentum of the emitter), with an ordefimg, direction and a collinear ordering.
For the right fermionic line, eikonal approximation is nalid, since the dominant momentum flow
alongp; is from gluon to fermion, nevertheless the collinear apjpnation can still be applied.
When computing the coefficient functions, one faces both b/ I& divergencies. On the one
hand, the UV divergencies are taken care of through renarati@in, which manifest themselves
by a renormalization scalgr dependency. On the other hand, the IR divergencies remain, b
factorization proofs at any order for DVCS justify the fabat they can be absorbed inside the
generalized parton distributions and result in finite cogfit functions. In our study, we are
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Figure 1: The ladder diagrams which contribute in the liijfkg-gauge to the leading? IogZ”(E X)/(x—=¢&)
terms in the perturbative expansion of the DVCS amplitudee i, and .. momentum components are
indicated. The dashed lines show the dominant momentum &ég thep, direction.

only interested into finite parts. Thus, using dimensioegutarization, in a factorization scheme
like MS, any scaleless integral can be safely put to zero althougbnitains both UV and IR
divergencies. Following this line of thought, we can thuglyadeal with DVCS on a quark for our
resummation purpose.

Finally, the issue related to the prescription in Eq. (2.4) is solved by computing the coeffi-
cient function in the unphysical regidh> 1. After analytical continuation to the physical region
0 < & <1, the final result is then obtained through the shift> & —ic.

For further analysisK,, denotes the contribution ofraloop ladder to the coefficient function

0= 4 (1cr augpz ) o (28)

Let us sketch the main steps of the derivation,dsee Ref. [4] for details).

2.3 Theladder diagram at order ag

A careful analysis [4] shows that the one-loop diagrams gf Eiare not dominant for— & .
Thus, we concentrate on the box diagram, see Fig. 1 méthl. Starting from the dominant part
of the numerator of the Born term which &= —2 p,, the numerator of the box diagram is

tr{ poy*[ K+ (x—&) p2] BLK+ (x+E&) poly’ JdH". (2.9)

In the limit x — &, while the left fermionic line is hard with a large, momentum, the gluonic
line is soft with respect to the left fermionic line. So we foem soft gluon approximation in the
numerator by takingg+ (x+ & ) p2 — (X+ &) p2. The dominant contribution comes from the residue
of the gluonic propagator. Thus, the numerator of the o-gheon propagatord”", is expressed

in terms of transverse polarizations, i’ ~ — 3, 55)5&)
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Figure 2: The one-loop diagrams which do not contribute taolmidmgIog ) terms in thep - A=0
light-like gauge.

The Sudakov decomposition of the gluon polarization veciothe light-likep; - A= 0 gauge

ekl g

TR
En =&l

(2.10)
allows us to define an effective vertex for the gluon and ontgguark through the polarization

sum
2

k
Zsl kigf —kﬁ+2B—lSp§’. (2.11)

The numeratorytNum)1, is o —independent and reads

B 2
_ﬁ%iﬂu{m<k_2%;mﬁk+“‘“pﬂp%
—4(x+ E)s%2 [1+ (ng)} . (2.12)

We emphasize that the ter(m+ &)/ arises from the eikonal emission from the left fermionic
line while the expression inside the -] accounts for the fact that the gluon is not soft from the
point of view of the right fermion (in an eikonal treatmentwbuld reduce tox— &)/B). We
now calculate the integral over the gluon momenkjrasing dimensional regularizatiofid®k —
S [dadp d9-2k, (k2 = —k?). The Cauchy integration of the gluonic pole which gives tbmhant

contribution reads
s [EXdB [® 4 o (Num)y
|:_2m_/’ __/ a2 2.13
! 2Jo B o TR Ia-k 213)

with the denominators? = —k? + a (B +x+&)s, Re = — k2 +a(B+x—&)s, F = —K* + (B +x—
&)sandk? = —k? + aBs. The relevant region of integration corresponds to siall x— &|. The
B andk integrations results in our final one-loop expression

I, = ———Io X— 2.14
1= g o PP A=), (2:14)
where we kept only the most singular terms in #he> & region and have no control of the value
of A within our approximation. To fix, we match our approximated one-loop result with the full
one-loop result (2.4). This amounts to cut #fentegral atQ?. Theie term is included according
to the same matching. This leads to

B 4 2m, ,(&—X
Il__mjbg <?—|s> (2.15)

A similar expression holds for the-channel diagram in the limk— —¢& .
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2.4 Theladder diagram at order a2

Let us examine the next order in the perturbative expansidmere are many diagrams con-
tributing but it can be shown that in the chosen gauge, thdlddoox diagram dominates, and
moreover that the relevant region of integration is whegmrdlis a strong ordering betweés,
andkq, i.e. ko, > ki, . Using the same arguments as in the one-loop case, one fas plie
numerator for this diagram, after taking advantage of stion ordering, as

2

(Num)y = —4s(x+ E)Z{Zkﬂ [1+ 2x= 5)] }

B B1
2kiz[ 2(B1+x—E)H
X 1+ . (2.16)
{ B B2
The denominators of fermionic propagators at the gluoniepwitha; = —kais read (Fig. 1)

L = ou(x+&)s , RE=—K+ay(Br+x—&)s,
L2 = ap(x+&)s , RB= K+ aa(Br+ Bo+x—&)s,
S = —K+ (B1+ P+ x—&)s. (2.17)

Using Cauchy integration over; and a,, we see that the dominant contribution comes from the
residues corresponding to the two gluon propagators, au$re

&—x E—x—P1 oo K3
Iy ~ / dB: / dB; / d?-2k, / dd-2k, (2.18)
0 0 0 0
X4s(2m')2 1 11 1
Xx=& Bitx—CIGIGIE— (Bi+P2+x—&)s

The integrals ovek; andk, are performed by assuming that the singularities are regathwithin
dimensional regularization. Taking into account the faeit & scaleless integral vanishes, we get
the following formula

4  (2im)? E—x .
Izz_x—@ris 2 Iog4<——|s>. (2.19)

Theie and the Z factor in the argument of the logarithm are fixed by hand,rediteg the matching
used at the one-loop level. These prescriptions are notddedthe resummation (ptbrslogz('fz;éx —
ie)]" terms which we want to exhibit and are beyond the accuracyioéstimate.

2.5 Theladder diagram at order a

We now turn to the estimation of all I8y & — x) terms. We again assume the strong ordering
(2.5, 2.6) ink, andf. The distribution of the poles generates nested integngls i

&—x E—x—P1 E—x—P1——Pn-1
/0 dps /0 B /0 dBs. (2.20)
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The numerator for the" order box diagram is obtained, by generalizing the argurfenthe
two-loop case, as:

2 o 2
(Numn:—ﬂdx+5f2hl[1+ax EWZMZ (2.21)
B B B2
2(B1+Xx— 5)} Zkin{ 2(Bn-1 +---+B1+x—f)}
x |14 - 1+ ,
S 3
and the denominators of propagators arej ferl---n,
L? = aj(x+&)s
RE = K +ai(Bu+--+Bi+x—&)s,
S =K+ Bt +Btx—&)s. (2.22)
Using dimensional regularization and omitting scalelessgrals, the integra), reads:
&—X &—x——Pn1 poo K5
Iy = dBl---/ dﬁnyjd’zkn--/dzd’zkl(—l)”
0 0 0 0
4s2m)" 1 1
X=& Pr+x=¢& Pt +Bratx—¢
1 1 1
Vi , 2.23
€ RIE— (Bt +hrx—)s 22

The integrals ovek; - - -k, are performed similarly as in the one- and two-loop caseslitg to
B 4 )" o (&—%x .
I”__x—f+is )] log T —ig), (2.24)
where the matching condition introduced in the one-loo éagxtended to—loops.

3. Result

3.1 Theresummed formula

Based on the results Egs. (2.15, 2.19, 2.24), one can buddréabummed formula for
the complete amplitude. Combining Egs. (2.8, 2.24), we get

iKn: eg - cosh[DIog(Ez—_fX—ieﬂ (3.1)

S X—§&+ie

1 & (Ez_fx—ie>D+<Ez;Ex—is>_D] .

T 2x—&+tie
In the absence of a next to leading logarithmic calculatiba,minimal and most natural resummed

formula which has the san@(as) expression as the full NLO result, reads, with= |/ %5

2m
res__ et21 E—x .
C _m{cosh[mog(7—le>}

D2 L& —X E—x .
_7[9+”x+flog< T —|£>H—(x—>—x). 3.2
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Figure 3: The real (black upper curves) and imaginary (gosyet curves) parts of the correctidia (&)
defined by Eq. (3.3) witla = 1 (solid),a= 1/2 (dotted) anch = 2 (dashed).

3.2 Phenomenological perspectives

To quantify the effect of our resummation procedure, we rieedonvolute the resummed
coefficient function with a GPD. If we blindly perform the @gral in the wholex—range, we
find a result that differs from the NLO result by less than oee ¢gent (with the model [6] and
as ~ 0.3). This hints to a stabilized perturbative expansion agdoua +¢& , in the sense that when
convoluted with reasonable GPDs the resummed amplitudieésyrfitted by the NLO result. In
order to respect the domain of applicability of our resunmamaprocedure, we calculate the effect
of restricting the use of our formula to a narrowrange aroundté, with a typical widthay
defined throughDlog(y/(2¢))| = 1. The theoretical uncertainty is evaluated by taking veio
values ofa. A more precise treatment of this uncertainty would requaie usual, to go beyond
the leading logarithmic approximation. In Fig. 3 we plot tia¢io R,(&) of the correction to the
modulus of the NLO Compton form factor, defined as:

Ru(E) S [ dX(C - Co— Co)H (%, €,0)

| /21dX(Co+C1)H(x.€,0)| '
The fact thaR,(&) does not exceed a few per cent, proves that the stabilizaefitre perturbative
expansion is a robust feature of our resummation procedure.

(3.3)

4. Conclusions

We have demonstrated that resummation of soft-collineasrgtadiation effects can be per-
formed in hard exclusive reactions amplitudes. The resylibormula for coefficient function sta-
bilizes the perturbative expansion, which is crucial forustful extraction of GPDs from experi-
mental data. A related expression should emerge in vargadions, such as the crossed case of
timelike Compton scattering [7] and exclusive meson etgetsduction. We did not study neither
the effects of the running afs nor the case of gluon GPD contributions which, although thegyin
at orderag are expected to be important in the snfallegime to be accessible at high energies [8].
It has been customary to perform resummation in terms ofiMeloments [9]. Here, conformal
Mellin moments may be more appropriate, and we will addreissguestion in future work.
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