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the leading contributions. An exponentiated expression results in a simple closed expression valid
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perturbative expansion which is crucial for a trustful extraction of generalized parton distributions

from experimental data.
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Soft-collinear resummation in deeply virtual Compton scattering S. Wallon

1. Introduction

While perturbative calculations are widely used in quantumfield theory, their summation is
always a formidable task, unreachable but in the simplest, not to say most simplistic, occurences.
From elementary particle to atomic and to solid state physics, resummation techniques have been
developped to go beyond a fixed order perturbation estimate through the sampling and evalua-
tion of an infinite class of diagrams shown to dominate in a limited kinematical region for some
given observables. The result of such procedures is often anexponentiated factor as in the famous
Sudakov case [1], exp(−Kg2 log2z), whereg is the coupling constant andz is the ratio of two
different characteristic scales, which governs both QED and QCD calculations of exclusive form
factors. Here we obtain for a specific case of exclusive scattering amplitude a resummed result of
the form cosh(Kglogz) wherez is a momentum fraction. To our knowledge, this form never previ-
ously emerged in field theoretic calculations. The process that we focus on is the most studied case
of a class of reactions - exclusive hard hadronic processes -which are under intense experimental
investigation. The result presented here provides an important stepping-stone for further develop-
ments enabling a consistent extraction of the quantities describing the 3-dimensional structure of
the proton.

In the collinear factorization framework the scattering amplitude for exclusive processes such
as deeply virtual Compton scattering (DVCS) has been shown [2] to factorize in specific kine-
matical regions, provided a large scale controls the separation of short distance dominated par-
tonic subprocesses and long distance hadronic matrix elements, the generalized parton distributions
(GPDs) [3]. The amplitude for the DVCS process

γ(∗)(q)N(p)→ γ(q′)N′(p′) , (1.1)

with a large virtualityq2 = −Q2, factorizes in terms of perturbatively calculable coefficient func-
tionsC(x,ξ ,αs) and GPDsH(x,ξ , t), where the scaling variable in the generalized Bjorken limit
is the skewnessξ defined asξ = Q2

(p+p′)·(q+q′) . The calculation of first order perturbative correc-

tions to the partonic amplitude has shown that terms of orderlog2(ξ±x)
x±ξ play an important role in the

region of small(x± ξ ) i.e. in the vicinity of the boundary between the domains where the QCD
evolution equations of GPDs take distinct forms (the so-called ERBL and DGLAP domains). We
scrutinize these regions and demonstrate that they are dominated by soft fermion and gluon propa-
gation. This explains why they can be exponentiated using quasi-eikonal techniques. The present
report is a short version of Ref. [4], with a few investigations of phenomenological issues added.

2. Full analysis

2.1 Lessons from the DVCS amplitude at NLO.

Let us begin with the discussion of the NLO corrections to theamplitude for DVCS (1.1). After
proper renormalization, the quark contribution to the symmetric part of the factorized Compton
scattering amplitude reads

A
µν = gµν

T

∫ 1

−1
dx

[

nF

∑
q

Tq(x)Hq(x,ξ , t)

]

, (2.1)
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where the quark coefficient functionTq reads [5]

Tq=Cq
0 +Cq

1 +Cq
coll log

Q2

µ2
F

, (2.2)

Cq
0 =e2

q

(

1
x−ξ + iε

− (x→−x)

)

, (2.3)

Cq
1 =

e2
qαSCF

4π(x−ξ + iε)

{

log2(
ξ −x
2ξ

− iε) − 9

−3
ξ −x
ξ +x

log

(

ξ −x
2ξ

− iε
)}

− (x→−x) . (2.4)

The first (resp. second) terms in Eqs. (2.3) and (2.4) correspond to thes−channel (resp.u−channel)
class of diagrams. One goes from thes−channel to theu−channel by the interchange of the photon
attachments. Since these two contributions are obtained from one another by a simple (x ↔ −x)
interchange, we now restrict mostly to the discussion of theformer class of diagrams.

2.2 Main steps of our analysis

We start our analysis with the observation that in the same spirit as for evolution equations,
the extraction of the soft-collinear singularities which dominate the amplitude in the limitx→±ξ
is made easier if one uses the light-like gaugep1 ·A = 0 with p1 = q′. We argue that in this
gauge the amplitude is dominated by ladder-like diagrams, see Fig. 1. In our analysis we expand
any momentum in the Sudakov basisp1, p2, ask = α p1+β p2+ k⊥ , wherep2 is the light-cone
direction of the two incoming and outgoing partons (p2

1 = p2
2 = 0, 2p1 · p2 = s= Q2/2ξ ). In this

basis,qγ∗ = p1−2ξ p2 .
We now restrict our study to the limitx→+ξ . The dominant kinematics is given by a strong

ordering both in longitudinal and transverse momenta, according to

x∼ ξ ≫ |β1| ∼ |x−ξ | ≫ |x−ξ +β1| ∼ |β2| ≫ ·· ·

· · · ≫ |x−ξ +β1+β2+ · · ·+βn−1| ∼ |βn|, (2.5)

|k2
⊥1| ≪ |k2

⊥2| ≪ ·· · ≪ |k2
⊥n| ≪ s∼ Q2 , (2.6)

|α1| ≪ ·· · ≪ |αn| ≪ 1. (2.7)

This ordering is related to the fact that the dominant doublelogarithmic contribution for each
loop arises from the region of phase space where both soft andcollinear singularities manifest
themselves. Whenx→ ξ the left fermionic line is a hard line, from which the gluons are emitted
in an eikonal way (which means that these gluons have their all four-components neglected in the
vertex w.r.t. the momentum of the emitter), with an orderingin p2 direction and a collinear ordering.
For the right fermionic line, eikonal approximation is not valid, since the dominant momentum flow
alongp2 is from gluon to fermion, nevertheless the collinear approximation can still be applied.

When computing the coefficient functions, one faces both UV and IR divergencies. On the one
hand, the UV divergencies are taken care of through renormalization, which manifest themselves
by a renormalization scaleµR dependency. On the other hand, the IR divergencies remain, but
factorization proofs at any order for DVCS justify the fact that they can be absorbed inside the
generalized parton distributions and result in finite coefficient functions. In our study, we are
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x − ξ + β1 + · · · + βn ,

k⊥1 + · · · + k⊥n

p1 − 2ξ p2 p1

βn, k⊥n

βn−1, k⊥n−1

β1, k⊥1

x + ξ + β1 + · · · + βn,

k⊥1 + · · · + k⊥n

x + ξ + β1 + · · · + βn−1,

k⊥1 + · · · + k⊥n−1

x + ξ + β1, k⊥1

(x + ξ) p2

x − ξ + β1 + · · · + βn,

k⊥1 + · · · + k⊥n

x − ξ + β1 + · · · + βn−1,

k⊥1 + · · · + k⊥n−1

x − ξ + β1, k⊥1

(x − ξ) p2

Figure 1: The ladder diagrams which contribute in the light-like gauge to the leadingαn
s log2n(ξ −x)/(x−ξ )

terms in the perturbative expansion of the DVCS amplitude. The p2 and⊥ momentum components are
indicated. The dashed lines show the dominant momentum flowsalong thep2 direction.

only interested into finite parts. Thus, using dimensional regularization, in a factorization scheme
like MS, any scaleless integral can be safely put to zero although itcontains both UV and IR
divergencies. Following this line of thought, we can thus safely deal with DVCS on a quark for our
resummation purpose.

Finally, the issue related to theiε prescription in Eq. (2.4) is solved by computing the coeffi-
cient function in the unphysical regionξ > 1. After analytical continuation to the physical region
0≤ ξ ≤ 1, the final result is then obtained through the shiftξ → ξ − iε .

For further analysis,Kn denotes the contribution of an-loop ladder to the coefficient function

Kn =−
i
4

e2
q

(

−iCF αs
1

(2π)2

)n

In . (2.8)

Let us sketch the main steps of the derivation ofIn (see Ref. [4] for details).

2.3 The ladder diagram at order αs

A careful analysis [4] shows that the one-loop diagrams of Fig. 2 are not dominant forx→ ξ .
Thus, we concentrate on the box diagram, see Fig. 1 withn= 1. Starting from the dominant part
of the numerator of the Born term which is6 θ =−2 6 p1, the numerator of the box diagram is

tr
{

6 p2γµ [6 k+(x−ξ ) 6 p2] 6 θ [6 k+(x+ξ ) 6 p2]γν}dµν . (2.9)

In the limit x → ξ , while the left fermionic line is hard with a largep2 momentum, the gluonic
line is soft with respect to the left fermionic line. So we perform soft gluon approximation in the
numerator by takingk+(x+ξ )p2 → (x+ξ )p2. The dominant contribution comes from the residue
of the gluonic propagator. Thus, the numerator of the on-shell gluon propagator,dµν , is expressed
in terms of transverse polarizations, i.e.dµν ≈−∑λ ε µ

(λ)ε
ν
(λ) .
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Figure 2: The one-loop diagrams which do not contribute to the leadinglog2(x−ξ )
x−ξ terms in thep1 ·A = 0

light-like gauge.

The Sudakov decomposition of the gluon polarization vectors in the light-likep1 ·A= 0 gauge

ε µ
(λ) = ε µ

⊥(λ)−2
ε⊥(λ) ·k⊥

βs
pµ

1 , (2.10)

allows us to define an effective vertex for the gluon and outgoing quark through the polarization
sum

∑
λ

ε⊥(λ) ·k⊥ε µ
(λ) =−kµ

⊥+2
k2
⊥

βs
pµ

1 . (2.11)

The numerator,(Num)1, is α−independent and reads

−4(x+ξ )
β

tr

{

6 p2

(

6 k⊥−2
k2
⊥

βs
6 p1

)

[6 k+(x−ξ ) 6 p2] 6 p1

}

= −4(x+ξ )s
2k2

⊥

β

[

1+
2(x−ξ )

β

]

. (2.12)

We emphasize that the term(x+ ξ )/β arises from the eikonal emission from the left fermionic
line while the expression inside the[ · · · ] accounts for the fact that the gluon is not soft from the
point of view of the right fermion (in an eikonal treatment itwould reduce to(x− ξ )/β ). We
now calculate the integral over the gluon momentumk, using dimensional regularization

∫

ddk→
s
2

∫

dα dβ dd−2k, (k2
⊥ =−k2). The Cauchy integration of the gluonic pole which gives the dominant

contribution reads

I1 =−2π i
s
2

∫ ξ−x

0

dβ
sβ

∫ ∞

0
dd−2k

(Num)1

L2
1 R2

1S2

∣

∣

∣

α= k2

βs

(2.13)

with the denominatorsL2
1 =−k2+α(β +x+ξ )s, R2

1 =−k2+α(β +x−ξ )s, S2 =−k2+(β +x−
ξ )s andk2 =−k2+αβs. The relevant region of integration corresponds to small|β +x−ξ |. The
β andk integrations results in our final one-loop expression

I1 =−
4

x−ξ
2π i
2!

log2(λ (x−ξ )) , (2.14)

where we kept only the most singular terms in thex→ ξ region and have no control of the value
of λ within our approximation. To fixλ , we match our approximated one-loop result with the full
one-loop result (2.4). This amounts to cut thek2 integral atQ2. Theiε term is included according
to the same matching. This leads to

I1 =−
4

x−ξ + iε
2π i
2!

log2
(

ξ −x
2ξ

− iε
)

. (2.15)

A similar expression holds for theu−channel diagram in the limitx→−ξ .

5



P
o
S
(
D
I
S
 
2
0
1
3
)
2
2
1

Soft-collinear resummation in deeply virtual Compton scattering S. Wallon

2.4 The ladder diagram at order α2
s

Let us examine the next order in the perturbative expansion.There are many diagrams con-
tributing but it can be shown that in the chosen gauge, the double box diagram dominates, and
moreover that the relevant region of integration is where there is a strong ordering betweenk2⊥

andk1⊥, i.e. k2⊥ ≫ k1⊥. Using the same arguments as in the one-loop case, one simplifies the
numerator for this diagram, after taking advantage of strong ki⊥ ordering, as

(Num)2 = −4s(x+ξ )2
{

2k2
⊥1

β1

[

1+
2(x−ξ )

β1

]}

×

{

2k2
⊥2

β2

[

1+
2(β1+x−ξ )

β2

]}

. (2.16)

The denominators of fermionic propagators at the gluonic poles withαi =− ki
βis

read (Fig. 1)

L2
1 = α1(x+ξ )s , R2

1 =−k2
1+α1(β1+x−ξ )s,

L2
2 = α2(x+ξ )s , R2

2 =−k2
2+α2(β1+β2+x−ξ )s,

S2 = −k2
2+(β1+β2+x−ξ )s. (2.17)

Using Cauchy integration overα1 andα2, we see that the dominant contribution comes from the
residues corresponding to the two gluon propagators, and reads

I2 ≈
∫ ξ−x

0
dβ1

∫ ξ−x−β1

0
dβ2

∫ ∞

0
dd−2k2

∫ k2
2

0
dd−2k1 (2.18)

×
4s(2π i)2

x−ξ
1

β1+x−ξ
1

k2
1

1

k2
2

1

k2
2− (β1+β2+x−ξ )s

.

The integrals overk1 andk2 are performed by assuming that the singularities are regularized within
dimensional regularization. Taking into account the fact that a scaleless integral vanishes, we get
the following formula

I2 ≈−
4

x−ξ + iε
(2iπ)2

4!
log4

(

ξ −x
2ξ

− iε
)

. (2.19)

Theiε and the 2ξ factor in the argument of the logarithm are fixed by hand, extending the matching
used at the one-loop level. These prescriptions are not needed for the resummation of[αs log2(ξ−x

2ξ −

iε)]n terms which we want to exhibit and are beyond the accuracy of our estimate.

2.5 The ladder diagram at order αn
s

We now turn to the estimation of all log2n(ξ −x) terms. We again assume the strong ordering
(2.5, 2.6) ink⊥ andβ . The distribution of the poles generates nested integrals in βi

∫ ξ−x

0
dβ1

∫ ξ−x−β1

0
dβ2 · · ·

∫ ξ−x−β1−···−βn−1

0
dβn . (2.20)
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The numerator for thenth order box diagram is obtained, by generalizing the argumentfor the
two-loop case, as:

(Num)n =−4s(x+ξ )n2k2
⊥1

β1

[

1+
2(x−ξ )

β1

]

2k2
⊥2

β2
(2.21)

×

[

1+
2(β1+x−ξ )

β2

]

· · ·
2k2

⊥n

βn

[

1+
2(βn−1+· · ·+β1+x−ξ )

βn

]

,

and the denominators of propagators are, fori = 1· · ·n,

L2
i = αi(x+ξ )s

R2
i = −k2

i +αi(β1+ · · ·+βi +x−ξ )s,
S2 = −k2

n+(β1+ · · ·+βn+x−ξ )s. (2.22)

Using dimensional regularization and omitting scaleless integrals, the integralIn reads:

In =

∫ ξ−x

0
dβ1· · ·

∫ ξ−x−···−βn−1

0
dβn

∫ ∞

0
dd−2kn· · ·

∫ k2
2

0
dd−2k1(−1)n

×
4s(2π i)n

x−ξ
1

β1+x−ξ
· · ·

1
β1+· · ·+βn−1+x−ξ

×
1

k2
1

· · ·
1

k2
n

1

k2
n− (β1+ · · ·+βn+x−ξ )s

. (2.23)

The integrals overk1 · · ·kn are performed similarly as in the one- and two-loop cases, leading to

In =−
4

x−ξ + iε
(2π i)n

(2n)!
log2n

(

ξ −x
2ξ

− iε
)

, (2.24)

where the matching condition introduced in the one-loop case is extended ton−loops.

3. Result

3.1 The resummed formula

Based on the results Eqs. (2.15, 2.19, 2.24), one can build the resummed formula for
the complete amplitude. Combining Eqs. (2.8, 2.24), we get

∞

∑
n=0

Kn =
e2

q

x−ξ + iε
cosh

[

D log

(

ξ −x
2ξ

− iε
)]

(3.1)

=
1
2

e2
q

x−ξ + iε

[

(

ξ −x
2ξ

− iε
)D

+

(

ξ −x
2ξ

− iε
)−D

]

.

In the absence of a next to leading logarithmic calculation,the minimal and most natural resummed

formula which has the sameO(αs) expression as the full NLO result, reads, withD =
√

αsCF
2π ,

Cres=
e2

q

x−ξ + iε

{

cosh

[

D log

(

ξ −x
2ξ

− iε
)]

−
D2

2

[

9+3
ξ −x
x+ξ

log

(

ξ −x
2ξ

− iε
)]}

− (x→−x) . (3.2)
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0.12

R
a
(ξ)

ξ

Figure 3: The real (black upper curves) and imaginary (grey lower curves) parts of the correctionRa(ξ )
defined by Eq. (3.3) witha= 1 (solid),a= 1/2 (dotted) anda= 2 (dashed).

3.2 Phenomenological perspectives

To quantify the effect of our resummation procedure, we needto convolute the resummed
coefficient function with a GPD. If we blindly perform the integral in the wholex−range, we
find a result that differs from the NLO result by less than one per cent (with the model [6] and
αs ≃ 0.3). This hints to a stabilized perturbative expansion around x=±ξ , in the sense that when
convoluted with reasonable GPDs the resummed amplitude is nicely fitted by the NLO result. In
order to respect the domain of applicability of our resummation procedure, we calculate the effect
of restricting the use of our formula to a narrowx−range around±ξ , with a typical widthaγ
defined through|D log(γ/(2ξ ))| = 1. The theoretical uncertainty is evaluated by taking various
values ofa. A more precise treatment of this uncertainty would require, as usual, to go beyond
the leading logarithmic approximation. In Fig. 3 we plot theratio Ra(ξ ) of the correction to the
modulus of the NLO Compton form factor, defined as:

Ra(ξ )=
[
∫ ξ+aγ

ξ−aγ +
∫−ξ+aγ
−ξ−aγ ]dx(Cres−C0−C1)H(x,ξ ,0)

|
∫ 1
−1dx(C0+C1)H(x,ξ ,0)|

. (3.3)

The fact thatRa(ξ ) does not exceed a few per cent, proves that the stabilizationof the perturbative
expansion is a robust feature of our resummation procedure.

4. Conclusions

We have demonstrated that resummation of soft-collinear gluon radiation effects can be per-
formed in hard exclusive reactions amplitudes. The resulting formula for coefficient function sta-
bilizes the perturbative expansion, which is crucial for a trustful extraction of GPDs from experi-
mental data. A related expression should emerge in various reactions, such as the crossed case of
timelike Compton scattering [7] and exclusive meson electroproduction. We did not study neither
the effects of the running ofαs nor the case of gluon GPD contributions which, although theybegin
at orderαs are expected to be important in the smallξ regime to be accessible at high energies [8].
It has been customary to perform resummation in terms of Mellin moments [9]. Here, conformal
Mellin moments may be more appropriate, and we will address this question in future work.
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