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1. Introduction

We present here results of calculation of ingredients of TMDEvolution of helicity and transver-
sity TMDs. Details can be found in Ref. [1].

Our understanding of the partonic structure of hadrons relies on the study of parton distribution
functions (PDFs) and their extensions. In the last years, particular attention has been devoted to
transverse-momentum-dependent parton distribution functions (TMDs). Standard collinear PDFs
are defined through collinear factorization theorems and obey the well-known DGLAP evolution
equations [2, 3, 4]. TMDs are defined through transverse-momentum-dependent factorization and
obey different evolution equations [5, 6, 7, 8, 9]. Here, forthe first time we analyze these TMD
evolution equations for two important distributions: the helicity and transversity TMDs.

Factorization theorems are cornerstones of our understanding of hadron structure. They de-
scribe experimentally measured cross-sections in terms ofperturbatively calculable hard parts and
universal structures related to nonperturbative parton dynamics, e.g., PDFs or TMDs. Factorization
leads to well-defined evolution equations [5, 6, 7, 8, 9] for the nonperturbative functions, which al-
lows us to relate experimental measurements at different hard scales and perform global analyses
of PDFs, TMDs, and the corresponding fragmentation functions.

The foundations of TMD factorization and evolution date back to Refs. [5, 6]. However,
important details related to gauge invariance have been clarified only in the last decade (see, e.g.,
[7, 8, 10, 11, 12, 13]). The first proof of TMD factorization was provided by Ji, Ma, and Yuan
in Refs. [10, 8] while a complete definition of TMDs and rigorous proof of factorization has been
recently presented by Collins in Ref. [9] and applied in Refs. [14, 15, 16, 17].

Here we consider the helicity distribution,g1(x,kT ) and the transversity distributionh1(x,kT).
They are closely related to the collinear PDFsg1(x) andh1(x), whose collinear evolution is well
known (see, e.g., Refs. [18, 19, 20]).

2. TMD Evolution

The proper definition of TMD PDFs [9] requires the introduction of the so-called unsubtracted
TMD PDFs together with further unsubtracted functions (sometimes called “soft factors”). Both
of them contain rapidity divergences that are eventually canceled in the final definition of the the
TMD PDFs.

The evolution of TMDs follows from their definitions, see Ref. [9]. There is a part where
polarization is important. In the regime wherekT is large compared to the hadronic scale, but
still small compared to the hard scale (i.e.,Λ ≪ |kT | ≪ Q), TMDs can be calculated within a
collinear factorization formalism [21, 22, 23]. This meansthat whenbT is small but still larger
than the inverse of the hard scale, i.e., 1/Q ≪ |bT | ≪ 1/Λ, can be written as the convultion of a
perturbatively calculable hard scattering coefficient andan integrated PDF:

f̃ j
1(x,bT ;µ ,ζF) = ∑

j ′

∫ 1

x

dx̂
x̂

C̃j/ j ′
(
x/x̂,bT ;µ ,ζF

)
f j ′

1 (x̂;µ)+O(ΛbT) , (2.1)

the sum j ′ goes over all quark and antiquarkq, antiquark ¯q flavors and gluong. The functions
f1(x̂;µ) are the ordinary integrated PDFs and theC̃j/ j ′(x/x̂,bT ;µ ,ζF) are the hard coefficient func-
tions. Similar expressions can be written for the helicity and transversity distribution. The hard
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coefficients will be different and will be denoted by∆C̃ for helicity andδC̃ for transversity. We
will explicitly calculate them for helicity and transversity distribution function.

We find the following expressions for the TMD PDF for finding a quark of flavor j ′ in a quark
of flavor j we find to orderαs,

C̃j/ j ′(x,bT ;µ ;ζF/µ2) = δ j ′ jδ (1−x)+ δ j ′ j
αsCF

π

{
ln

(
2e−γE

µbT

)
1+x2

(1−x)+
+

1
2
(1−x)+

+δ (1−x)

[
− ln2

(
2e−γE

µbT

)
+ ln

(
2e−γE

µbT

)
ln

(
ζF

µ2

)]}
+O(α2

s ) , (2.2)

∆C̃j/ j ′(x,bT ;µ ;ζF/µ2) = δ j ′ jδ (1−x)+ δ j ′ j
αsCF

π

{
ln

(
2e−γE

µbT

)
1+x2

(1−x)+
+

1
2
(1−x)+

+δ (1−x)

[
− ln2

(
2e−γE

µbT

)
+ ln

(
2e−γE

µbT

)
ln

(
ζF

µ2

)]}
+O(α2

s ) , (2.3)

δC̃j/ j ′(x,bT ;µ ;ζF/µ2) = δ j ′ jδ (1−x)+ δ j ′ j
αsCF

π

{
ln

(
2e−γE

µbT

)
2x

(1−x)+
+

+δ (1−x)

[
− ln2

(
2e−γE

µbT

)
+ ln

(
2e−γE

µbT

)
ln

(
ζF

µ2

)]}
+O(α2

s ) , (2.4)

for unpolarised, helicity, and transversity TMDs respectively. The strong couplingαs is evaluated
at a scaleµ , and the number of active flavors is eNf . The usualSU(Nc) color factors areCF =

(N2
c −1)/(2Nc), Tf = 1/2.

For the gluon contributions we obtain

C̃j/g(x,bT ;µ ,ζF/µ2) =
αsTf

π

{
ln

(
2e−γE

µbT

)(
x2 +(1−x)2)+x(1−x)

}
+O(α2

s ) , (2.5)

∆C̃j/g(x,bT ;µ ,ζF/µ2) =
αsTf

π

{
ln

(
2e−γE

µbT

)
(2x−1)+ (1−x)

}
+O(α2

s ) , (2.6)

δC̃j/g(x,bT ;µ ,ζF/µ2) = 0, (2.7)

for unpolarised, helicity, and transversity TMDs, respectively. Note that there are no contributions
from Soft factor at this order to quark in a gluon coefficient functions.

Eqs. (2.3, 2.4) and Eqs. (2.6, 2.7) represent the original results of this paper. They allow us to
write epxressions for the helicity and transversity TMDs that fulfill TMD evolution equations and
have a behavior at high transverse momentum that matches perturbative calculations. The solution
for a TMD for flavor f = q or q̄ can be written in a compact way as (see Refs. [9, 14])

f̃ f
1 (x,bT ;µ ,ζF) = ∑

i=q,q̄,g

(
C̃f/i ⊗ f i

1

)
(x,b∗;µb)e

S̃(b∗;µb,µ ,ζF)e
gK (bT) ln

√
ζF√
ζ f 0 f̂ f

NP(x,bT) (2.8)
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Analogous formulas hold for the helicity,g1, or transversity,h1, distributions.
In order to be able to use Eq. 2.1 also at largebT , the so-calledb∗ prescription can be introduced

b∗ ≡ bT/
√

1+b2
T/b2

max.

The perturbatively calculable functioñS(b∗;µb,µ ,ζF) reads

S̃(b∗;µb,µ ,ζF) = ln

√
ζF

µb
K̃(b∗;µb)+

∫ µ

µb

dµ ′

µ ′

[
γF(g(µ ′);1)− ln

√
ζF

µ ′ γK(g(µ ′))

]
, (2.9)

and expressions for̃K,γF , andγK at orderαS can be found in Appendix B of Ref. [14].
We adopt also these other choicesµ = Q,µb = 2e−γE/b∗ ≡ b0/b∗,ζF = Q2,ζF0 = Q2

0. Different
options can be explored in order to test the sensitivity of the final results to the scale choice. Note
that K̃(b∗;µb) = 0 at this order with this choice, we also setS̃= 1 in caseµb > µ in order to avoid
non physical behaviour of the Sudakov form factor.

3. Numerical results

f 
(x
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  )
f 
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Figure 1: Evolution of f u(x,kT ;Q,Q2) and f u(x;Q,Q2) at two different scalesQ = 10 GeV. Solid line cor-
responds to unpolarised evolution, dashed line corresponds to helicity evolution, and dotted line corresponds
to transversity evolution.

Let us finally present results of TMD evolution using the following toy functions at initial
scaleQ0 = 1 GeV:xu0(x) = xd0(x) ≡ x0.5(1− x)0.5,xū0(x) = xd̄0(x) ≡ 0,xg0(x) ≡ x0.5(1− x)0.5.

Note that the choice is arbitrary as our goal is just to demonstrate the results of evolution. These
initial distributions will be assumed the same for unpolarised (f1), helicity (g1), and transversity
(h1) distributions. Results with realistic initial functionswill be presented elsewhere.

The choices of non-perturbative functions that enter in Eq.2.8 are the following (we use
again the same function for all three polarization cases just for illustration purposes):̂f f

NP(x,bT) =

exp
(
−b2

T〈k2
T〉

4

)
,gK(bT) = −gb2

T , where〈k2
T〉 = 0.25 (GeV2), g = 0.2 (GeV2). We also choose

bmax= 1 (GeV−1).
We will show the evolution of the TMD functions choosing particular flavor f = u as well as

their integral overkT up to the value ofQ, which we conventionally refer to as their 0th kT -moment:
f u(x,kT ;µ ,ζF) , f u(x;µ ,ζF ) ≡ 2π

∫ µ
0 kTdkT f q(x,kT ;µ ,ζF) . Note that this 0th kT -moment af a

TMD functions f u(x;µ ,ζF ) should not be confused with collinear PDFf u(x;µ).
In Fig. 1 we show results of the evolution off u(x,kT ;Q,Q2) and f u(x;Q,Q2) atQ= 10 (GeV)

for the unpolarized, helicity and transversity distributions.
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4. Conclusions

In this paper we calculated the evolution of the transverse-momentum-dependent (TMD) he-
licity and transversity distribution functions. We adopted the definition of TMD PDFs as given by
Collins in Ref. [9]. We provided explicit formulas for all coefficient functions atαS. The results of
this paper can be readily used in TMD phenomenology.
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06OR23177. A. Bacchetta is partially supported by the Italian MIUR through the PRIN 2008EKLACK,
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