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1. Introduction

The magnetic moment of the muon is generally defined by the quantity g−2 or aµ = 1
2(g−2)

where aµ is referred to as the anomalous contribution i.e. the part arising from higher order inter-
actions not defined in the Dirac equation, where g is exactly 2. In the Standard Model (SM) aµ

receives higher order contributions from QED, electroweak (EWK) and hadronic processes. Exper-
imentally aµ is the most precisely measured quantity at an accelerator. The BNL E821 experiment
determined aµ to a precision of 0.54 ppm [1] which is somewhat larger than the precision of the
SM prediction of 0.42 ppm [2]. The measured and SM value differ by approximately 3.5 standard
deviations and this has resulted in over 2,600 publications citing the BNL result, with explanations
of the discrepancy ranging from the prosaic to the esoteric. The motivation for a new measurement
is to investigate this discrepancy with a greater precision. The new FNAL g-2 experiment will mea-
sure aµ to a precision of 0.14 ppm and the uncertainty on the SM prediction is expected to reduce
by almost 50% on the same timescale. Even without an improvement in the SM estimate, the im-
proved precision expected from the new FNAL experiment is sufficient to establish a discrepancy
with a significance beyond 5 standard deviations should the present difference be maintained and
beyond eight standard deviations if the improvement in the SM estimate is also realised.

The aµ measurement complements the measurements being undertaken at the LHC. If new
physics is observed at the LHC then the aµ measurement will be essential in establishing the
integrity of any models invoked to explain new phenomena, and moreover can be used to deter-
mine model parameters and resolve degeneracy in models that the LHC data alone cannot. For
example some SUSY parameters, such as those describing slepton and Higgs mixing, cannot be
determined from LHC data alone, and marked differences in the muon magnetic moment are pre-
dicted between different extra dimension models. Moreover the measurement also has sensitivity
to chirality-flipping interactions and low energy phenomena which the LHC has limited sensitivity
to. If no new physics is observed at the LHC and the magnetic moment is found to be consistent
with the SM then this again severely constrains the class of models that can still be considered as
candidates to explain the deficiencies of the SM.

2. Standard Model Value for aµ

By far the most dominant contribution to the SM value of aµ is the simplest higher order
QED contribution, first calculated by Schwinger in 1948 [3], which contributes exactly α

2π
to aµ .

The QED contribution has recently been determined, over a 9-year period, to 5-loops [4] from
a calculation of 12,672 Feynman diagrams and independently cross-checked to 4-loops [5]. The
uncertainty on the QED prediction, predominantly from the uncertainty in α , is 0.3 ppb which is
far below the 0.14 ppm precision anticipated from the FNAL E989 experiment and some 6,000
times smaller than the present discrepancy with respect to the SM. The EWK contribution [6],
recently extended to a complete 2-loop calculation and incorporating the measured value for the
Higgs boson mass, is negligible beyond NLO and its uncertainty, 0.01 ppm, is also significantly
below the expected measurement accuracy. The EWK contribution from diagrams involving the
Higgs is also far below the measurement accuracy. However the total EWK contribution of 1.3 ppm
is larger than the present and future measurement accuracy and as such the aµ measurement is an
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incisive probe of the SM’s EWK sector. The hadronic contribution has an uncertainty (0.42 ppm)
comparable with the present measured uncertainty and three times the anticipated precision of
the FNAL E989 experiment. A significant theoretical effort is already underway to reduce this
uncertainty through improved lattice calculations and the incorporation of new low-energy e+e−

measurements. These are discussed in detail in several contributions to these proceedings [7–12].
It is expected on the timescale of the FNAL aµ measurement that the uncertainty on the hadronic
uncertainty will have halved allowing the more precise measurement to better probe for evidence
of new physics. The different SM contributions to aµ are shown in Fig. 1 along with the projected
uncertainty of the FNAL measurement and the size of the current discrepancy between the BNL
E821 measurement and the SM prediction. The discrepancy is almost twice the magnitude of the
EWK contribution to aµ .

Figure 1: The size of the SM contributions to aµ along with the projected uncertainty on the FNAL
measurement and the size of the current discrepancy between the BNL E821 measurement and the SM
prediction.

It is worth noting that the recent measurement of the Higgs boson mass also affords a cross-
check of the SM estimate of the largest hadronic contribution to aµ : the leading order hadronic
vacuum polarisation contribution. This contribution is determined from low energy e+e− cross
section data via a dispersion integral. The same cross section data also appears in a dispersion
integral that determine the hadronic corrections to the fine coupling constant and the value of the
fine coupling constant in turn has an influence on the Higgs mass returned in the fits to EWK data.
The present fits to EWK data return a Higgs mass of 94+25

−22 GeV [13] in good agreement with
the value measured by ATLAS and CMS, highlighting that the low energy e+e− data is reliable.
Indeed if the measured Higgs boson mass is used to constrain the hadronic contribution to the fine
coupling constant then the predicted leading order hadronic vacuum polarisation contribution to aµ

reduces [14] and the discrepancy between the BNL measurement and the SM prediction of aµ is
increased.

3. Models of new physics probed by g-2

One of the principle motivations for this measurement is to probe for evidence of new physics

3



P
o
S
(
P
h
o
t
o
n
 
2
0
1
3
)
0
4
1

The New FNAL Muon g-2 Experiment Mark Lancaster

beyond the SM (BSM) and so constrain BSM models or help resolve ambiguity in the model
parameters should new physics be observed in the analysis of the higher energy data of the LHC: the
analysis of which will coincide with the first data from the new FNAL experiment. The contribution
of new physics to aµ come from CP and flavour-conserving interactions which are sensitive to and
potentially enhanced by chirality flips. Many high-energy collider observables are insensitive to
chirality flips and many other low-energy observables are chirality-flipping but flavor-violating (b-
or K-decays, µ → e conversion, etc.) or CP-violating (electric dipole moments) and so the aµ

measurement represents a unique and so complementary probe of new physics.
The role of aµ as a discriminator between very different SM extensions can be characterised

by a relation discussed by Czarnecki and Marciano [15] that holds in a wide range of models as a
result of the chirality-flipping nature of aµ . BSM physics associated with a mass scale of Λ will
modify the muon mass by δmBSM

µ and aµ by δaBSM
µ and these two effects are related via:

δaBSM
µ = O(1)×

(mµ

Λ

)2
×

(
δmBSM

µ

mµ

)
.

The ratio CBSM≡ δmBSM
µ

mµ
is typically between O( α

4π
) (for perturbative contributions to the muon

mass) and O(1) (if the muon mass is essentially due to radiative corrections). The contributions
to aµ are highly model dependent: hence the motivation for a precise measurement. The same
equation applies for the electron ae and so while ae is measured to far higher precision (0.3 ppb)
than will ever be possible for the muon, its sensitivity to new physics is limited, due to the m`

weighting, to scales below 100 MeV while muon measurements can probe new physics from scales
of 20 MeV up to and beyond the electroweak scale.

In the models predicting large values of CBSM (∼ 1) that include extended technicolour, the
muon mass is generated by radiative effects at some scale Λ and the BSM contribution to aµ can
be very large i.e. 1100×10−11

(1TeV
Λ

)2 and so scales up to approximately 3 TeV can be probed. In
such models the aµ measurement coupled with a h→ µµ branching ratio measurement could thus
help elucidate the mechanism generating fermion masses.

In the models with a small value of CBSM (∼O(α/4π)) a large contribution to aµ is generally
disfavoured and one would expect a measurement within 1–2σ of the SM. Conversely if a large
value of aµ is measured then a large class of such models would be ruled out. These include
models with extra weakly-interacting gauge bosons (Z′, W′), certain extra dimension models and
variants of Little Higgs Models. For example the contributions to aµ in a model with δ = 1 (or
2) universal extra dimensions [16] or a Littlest Higgs model with T-parity [17] are both less than
10×10−11 i.e. below the expected precision of the FNAL measurement and would be ruled out if
a large aµ were measured. The signature of these models at the LHC can be very similar to SUSY
models but SUSY models in general predict larger aµ . This is one of several examples where the
aµ measurement in concert with LHC observations can help resolve model degeneracy.

In the models with intermediate values of CBSM i.e. O(α/4π)<CBSM < O(1) then the mass
scales of the BSM physics phenomena are generally around the weak scale. The most well-known
example of such a model is SUSY where aµ receives an enhancement proportional to tanβ (the
ratio of the vacuum expectation values of the two Higgs doublets). In SUSY models the predictions
for aµ , the muon electric dipole moment and the rate of µ → e conversion are determined by the
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slepton mixing parameters. These are poorly constrained by LHC data which are predominantly
sensitive to SUSY squark and gluino parameters. Indeed present limits on the smuon mass are
presently below 250 GeV. In the simplest SUSY models the SUSY contribution to aµ is given by:

aSUSY
µ = sgn(µ)×130×10−11× tanβ

(
100 GeV

Λ

)2

and so can provide sizeable contributions and indeed offers the potential for a much more precise
determination of tanβ than is possible from LHC data alone and also a determination of the sign
of the SUSY µ-parameter. With 100 fb−1 of data the LHC can determine tanβ with a precision of
approximately 50%, but when combined with a 0.14 ppm measurement of aµ it can be determined
to 10%.

The fact that no evidence for SUSY has been established at the LHC has resulted in lower
limits for Λ in the simplest SUSY models ranging from 300 GeV to 1.5 TeV. The SUSY model
builders trying to find SUSY parameters that are still allowed by the latest LHC and dark matter
constraints find some tension with these and those favoured by the BNL aµ measurement which
favours somewhat lower SUSY masses in the range 200–700 GeV. However, given the large number
of free parameters in SUSY models, there still remains significant regions of SUSY phase space that
can accommodate a large value of aµ and the LHC and dark matter constraints. This is illustrated
in Fig. 2 where the ATLAS [18] (and LEP) limits on the smuon and neutralino mass for a certain
choice of mSUGRA parameters are compared to the masses (for different values of tanβ ) required
to produce the aµ value measured by E821 [19].

Figure 2: The ATLAS (red) and LEP (orange shaded) limits on the smuon and neutralino mass for a certain
choice of mSUGRA parameters compared to the masses (for different values of tanβ required to produce
the aµ value measured by E821. The darkest green shaded region represents the values required to give the
E821 value ± 1 σ for a tanβ value of 40.

Recently particular attention has been paid to SUSY models where the squark and slepton
mass scales are different. A priori there is no reason to expect that the coloured and non-coloured
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SUSY sectors should behave the same and in [20] it is stated: “Looking to (SUSY) models with a
different connection between the coloured and uncoloured sector, not only seems timely now, but
mandatory”. Measurements, such as aµ , in the non-coloured sector which remain difficult at the
LHC will clearly be vital in establishing the integrity of such models. Indeed many alternate SUSY
models beyond the simple cMSSM are now being pursued such as natural-SUSY [21], gauge-
mediated SUSY breaking [22] and compressed SUSY [23] which can accomodate a large aµ and
the current LHC and dark matter constraints.

There are also many non-SUSY variants that predict sizeable contributions to aµ . The most
well-know are large extra dimension models, variants of Randall-Sundrum models [24, 25] and
unparticle models [26].

Recently a number of non-minimal models for the dark-matter sector have been explored
where in analogy with ordinary matter coupling to the long-range EM force mediated by pho-
tons, a new long-range force that couples to dark-matter, mediated by “dark-photons” has been
postulated. These dark-photons can be very light and, in some sense, be viewed as extremely light
Z′ bosons. While the dark-photons have no direct coupling to dark-matter, they can mix with the
photon, thus inducing measurable effects in aµ and also ae. These models (for sub-GeV) particles
are very difficult to study at the LHC but aµ can probe masses in the 20–200 MeV mass region.

An improved measurement of aµ will be vital in determining the validity of any of these
models.

4. The new g-2 experiment at FNAL (E989)

The new experiment at FNAL will reduce the experimental uncertainty by over a factor of 4
with respect to the BNL measurement. This will be achieved in three ways:

• Utilising a well-established technique and apparatus (the original BNL storage ring).

• Increasing the number of stored muons by a factor of 21 to reduce the statistical uncertainty
by more than a factor of 4.

• Reducing the systematic uncertainty by a factor of 3.

The BNL measurement was dominated by statistical uncertainties whereas the new FNAL
measurement is expected to achieve parity between the statistical and systematic uncertainties.

The experimental measurement is in principle straightforward: positively-charged, polarised
muons of a well-defined momentum (3.094 GeV) are injected into a storage ring and the rate of
precession of the muon’s spin is determined by measuring the number of decay positrons (above
an energy threshold) as a function of time coupled with a very precise measurement of the storage
ring’s 1.45 T magnetic field. The measurement exploits the parity-violation inherent in the weak
interaction which means the direction of the muon spin and the electron decay direction are cor-
related in the muon’s rest frame: specifically the highest energy e+ are emitted parallel to the µ+

spin in the muon rest frame. Muons in the storage ring are confined radially by the fixed 1.45 T
dipole magnetic field and must be constrained vertically by an additional quadrupole electric field.
This electric field would ordinarily also contribute to the rate of the muon’s spin precession since
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the electric field is seen as a moving magnetic field in the muon’s rest frame except at certain val-
ues of the muon momentum, p, when p = m√aµ

which fortunately happens to be at a momentum,
the so-called magic-momentum of 3.094 GeV, that is readily achievable in a particle accelerator.
At this magic-momentum, the rate at which the muon precesses relative to the momentum, ωa, is
simply given by: −Qe

m aµB. Small (sub-ppm) corrections are applied to ωa to account for the fact
that not all muons in the storage ring are at the magic-momentum and not all muons have a trajec-
tory exactly perpendicular to the magnetic field. ωa is determined from a five-parameter fit to the
function: N(t,Eth) = N0(Eth)e−t/γτµ [1+A(Eth)cos(ωat +φ(Eth))] which describes the number of
decay positrons above an energy threshold, Eth, detected as a function of time in terms of ωa, the
muon lifetime τµ and two parameters: A and φ which are known functions of Eth and the polar-
ization and momentum of the µ+ beam. The optimum precision on ωa is realised for threshold
energies of approximately 1.8 GeV. Data is typically collected for approximately 10 muon life-
times (γτµ = 64 µs) per muon spill. Fig. 3 shows N(t) (modulo 100 µs) for 3.6 billion electrons
with a threshold energy of 1.8 GeV from the final E821 µ−dataset along with the five-parameter
fit. The g-2 precession period is 4.37 µs i.e. one precession is completed approximately every 30
revolutions of the storage ring.
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Figure 3: The number of decay electrons detected as a function of time (modulo 100 µs) from the E821
2001 dataset (blue) with a 5-parameter least-squares fit superimposed (green).

5. Key improvements in the FNAL g-2 experiment

The FNAL g-2 experiment will be improved in four keys ways over the BNL E821 experiment
that will result in reductions in the statistical and systematic uncertainties by factors of 4 and 3
respectively. These improvements are:

• accelerator improvements to produce more muons per proton at a lower instantaneous rate
with a far reduced pion contamination,

• a new inflector and kicker magnet resulting in a larger acceptance, a more stable beam and
better damping of the coherent betatron oscillations,
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• improved uniformity and calibration of the B-field,

• new detectors with improved stability, resolution and better handling of pileup.

These improvements are described in more detail in the following sections.

5.1 Accelerator improvements

Compared to BNL the FNAL accelerator complex will produce more muons at a lower instan-
taneous rate with a far reduced pion contamination. This is being achieved by constructing new
muon beamlines that will serve both the g-2 and Mu2e experiments in a dedicated muon campus.
Modifications to the proton accelerators are already largely complete as part of the improvements
necessary for the NOνA and MicroBoone experiments. These include a new RFQ injector into
the LINAC, an increase in the FNAL Booster repetition rate (ultimately to 15 Hz) and a new con-
nection between the Booster and The Recyler. The g-2 experiment will run concurrently with the
neutrino experiments and will use 4 from the 20 Booster proton batches injected from the LINAC
(per Main Injector cycle). Each of these four proton batches (separated by132 ms) is further split
into 4 micro-bunches (of ∼ 100 ns duration and separated by 12 ms) such that on average the rate
of muon“spills” injected into the storage ring is 12 Hz with each spill containing ∼ 105 muons.
With an assumed uptime and data-taking efficiency of 75%, a data-taking period of 14 months
(plus 2 months for commissioning and 2 for systematic studies) is required to achieve the required
statistical precision (0.1 ppm).

The muon beam will be produced in the complex that was used by the Tevatron to produce
antiprotons and new beamlines will be constructed to the g-2 and Mu2e experiments. Protons will
be accelerated to a kinetic energy of 8 GeV in the Booster and re-bunched into the four smaller
(micro-)bunches in the Recycler with ∼ 1012 protons per bunch and transported through three
beamlines (P1, P2 and M1) to the old antiprototon production target. A secondary beam from the
target will be focussed using a lithium lens and positively-charged particles with a momentum of
3.11 GeV (± ∼ 10%) will be selected using a bending magnet. The secondary beam leaving the
target station will travel through two beamlines (M2 and M3) which are designed to maximise the
capture of muons with momentum 3.094 GeV from pion decays. The beam will then be injected
into the Delivery Ring. After several revolutions around the Delivery Ring essentially all of the
pions will have decayed into muons and the muons will also have separated in time from the heavier
protons. A kicker will then be used to abort the protons, and the muon beam will be extracted into a
new beamline (M5) that leads to the g-2 storage ring which will be housed in a dedicated building
(MC-1). Several of the beamlines and the associated cryogenics will also ultimately be used to
transport 8 GeV protons to the Mu2e experiment. After the proton target and before the (g-2) ring
the particles traverse almost 2 km of beamline which ensures that the beam entering the g-2 storage
ring is essentially pion-free which is a significant improvement over the BNL experiment. The
beamlines serving the muon campus are shown in Fig. 4. Construction of the experimental hall for
the g-2 storage ring has begun and it will be ready for occupancy in March 2014. This building will
provide a much more stable environment for the experiment in terms of alignment and temperature
compared to the BNL experiment.
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Figure 4: The FNAL Muon Campus beamlines and experimental halls. MC-1 will house the g-2 storage
ring.

5.2 Injection/beam-storage improvements

The muon beam is injected into the storage ring using a novel superconducting “inflector”
magnet that cancels the main 1.45 T field from the storage-ring and the beams enters the ring
displaced by 77 mm with respect to the desired central orbit. They are placed into the central orbit
by a fast-kicker pulsed-magnet that moves the beam through 14 mrad. The requirements on the
inflector magnet are very restrictive: it should null the storage ring field such that the muons are
not deflected by the main 1.45 T field; it should be a static device to prevent time-varying magnetic
fields correlated with injection; it cannot “leak” magnetic flux into the precision shimmed storage-
ring field and as such cannot contain any ferromagnetic materials.

The E821 experiment used a truncated double cosθ magnet [27] with equal and opposite cur-
rents in two concentric magnets and a superconducting shield that reduced the “leaked” magnetic
flux from the inflector to a level that induced only a 0.2 ppm systematic on the determination of the
B-field. This is the baseline design for the FNAL inflector but three key improvements will also be
implemented:

• A reduction in the flux leakage e.g. through careful design of the current-carrying leads, to
below 1 G such that the B-field systematic can be reduced from 0.2 ppm to 0.07 ppm.

• An opening in the ends of the magnet and a larger beam aperture to improve the beam sta-
bility and increase the number of stored muons by a factor of 3.8.

• Improved beam matching in the injection system to reduce beam losses and coherent betatron
oscillations (CBO).

A prototype of the open-inflector developed for E821 is shown in Fig. 5.
A new fast-kicker magnet system will also be produced. In the BNL experiment the kicker

pulse was not a flat-top and had a duration longer than the cyclotron period of 149 ns such that a
muon pulse received more than a single “kick”. A new kicker will address these limitations in the
BNL kicker and will provide an integrated vertical field of 1.1–1.4 kG m from three independent
1.7 m long magnets, each with a dedicated pulse forming network. The kicker hardware cannot
contain magnetic elements such as ferrites since they will perturb the storage-ring’s field and any
eddy currents must be negligible (or well-known) within 20 µs after injection when the positron
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Figure 5: (LEFT): A cross sectional view of the inflector and storage-ring dipole. (RIGHT): A prototype of
the open-inflector developed for E821.

decays begin to be recorded. The new kicker will be based on a Blumlein triaxial transmission line
as opposed to the E821 LCR PFN design and a prototype is presently under test at Cornell.

5.3 Improvements in the B-field measurement

The determination of aµ requires both the measurement of ωa from the modulation in the
arrival time of the decay positrons and the B-field. In particular one needs to determine the inte-
grated B-field experienced by the muons and so this necessarily also involves measurements (and
simulation) of the muon beam’s profile and trajectory. The muon beam is confined to a cylindrical
region of 9 cm in diameter and 44.7 m in length such that the field must be known over a volume
of approximately 1.1 m3. To achieve the factor of three reduction in the systematic uncertainty
the 1.45 T storage-ring magnetic field must be determined to an accuracy of 0.07 ppm. This will
be achieved through: improved shimming of the magnet and temperature control, an increase in
the frequency at which the field is mapped and the area which is mapped through improved probe
positioning. Improvements in the measurement of the profile and trajectory will come from an
improved simulation of the accelerator optics and through the introduction of two straw tracking
detectors (see section 5.4).

The storage-ring’s 1.45 T magnetic field is provided by three superconducting coils. A contin-
uous “C-shape” yoke is formed from twelve 30◦ segments of iron designed to minimise the impact
of edge-effects on the field. This formation eliminates large gradients that would otherwise make
a precise determination of the B-field very difficult. The coils and yoke will be those used in the
E821 experiment.

The mapping of the field will be achieved using: an array of 378 NMR probes outside of
the vacuum chamber that monitors the magnetic field during data collection; a mapping trolley of
17 NMR probes moved through the experimental volume 2-3 times per week (without beam) and
plunging probes to make additional measurements. The homogeneity in the field achieved in E821
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is shown in Fig. 6 where it can be seen for the central region that the field is uniform to better than
0.5 ppm.

The absolute calibration (relative to the free-proton) is provided by a spherical water probe.
This provides a measurement of the magnetic field in terms of the Larmor frequency of a free pro-
ton, ωp. This is combined with the ωa measurement to determine aµ via the relation: aµ =

ωa/ωp
λ−ωa/ωp

,
where λ is the muon-to-proton magnetic moment ratio determined from hyperfine splitting mea-
surements in muonium. The FNAL absolute calibration water probe will be checked against the
absolute calibration probe to be used for the J-PARC muonium hyperfine splitting (MuHFS) exper-
iment [28, 29] that will measure λ to a precision of 0.01 ppm.
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Figure 6: Homogeneity of the field in E821: at the calibration position (LEFT) and for the azimuthal average
for one trolley run during the 2000 period (RIGHT). In both figures, the contour spacing is 0.5 ppm.

5.4 Improvements in the detectors

ωa is determined from the modulation in the arrival time of the decay positrons above an
energy threshold. This is subject to uncertainties arising from the detector calibration and from
pileup whereby two low energy positrons overlap spatially and temporally in the calorimeter. The
pileup affects the pulse fitting algorithm and may cause two low energy positrons to fake a high
energy positron. Changes in the detector gain over the duration of the fill are particularly critical
since they will further modulate the time distribution of the positrons.

Several improvements will be implemented to allow a reduction in the gain and pileup system-
atic uncertainties by a factor of 3. These include:

• A new PbF2 crystal calorimeter with improved segmentation and resolution.

• Calorimeter readout using SiPMs which are always on i.e. due to the reduced pion contami-
nation there is no need to turn off electronics during injection.

• Improved temperature (and hence gain) control.

• Better monitoring of the calorimeter gain using an UV laser.
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• The recording of all calorimeter samples (not just those above a threshold).

• A large acceptance straw tracker system that will provide high precision tracking with good
momentum resolution.

Figure 7: (LEFT): A close-up of prototype PbF2 crystals together with a 16-channel Hamamatsu SiPM.
(RIGHT): The 7-crystal PbF2 array used in the FNAL test beam. The SiPM is visible on the center channel,
while conventional PMTs were used on the remaining crystals.

PbF2 can achieve a resolution (5% at 2 GeV) a factor of two better than the E821 calorimeter
with a fast Cherenkov signal, a Moliere radius of 1.3 cm and critically it has a very low magnetic
susceptibility. A prototype of the PbF2 calorimeter and SiPM readout have recently been tested in
a testbeam at FNAL. The array used is shown in Fig. 7.

The in-vacuum straw tracker will be used to provide calibration via E/p and to identify pileup
events so that calorimeter pulse-fitting algorithms can be optimised and any biasses quantified. The
tracker will also be used to determine the muon beam profile that is important for the determination
of ωp. Each tracker will be composed of∼ 10 separate stations and will measure the momentum to
better than 3.5% at 1 GeV, have a vertical angular resolution of better than 10 mrad and determine
the impact parameter of the tracks to better than 1 cm. The straw design is based on one for Mu2e
and prototype detectors (see Fig. 8) will be evaluated in a testbeam in February 2014.

The straw trackers in addition to reducing the systematics in the aµ measurement will also
be used to make a measurement of the muon’s electric dipole moment (EDM) by measuring the
average vertical angle of positron tracks versus time (modulo the precession frequency). In the SM
the muon EDM is predicted to be O(10−35) e cm and simple mass scaling of the most recent limit
on the electron EDM [30] would suggest the muon EDM is < O(10−26) e cm. The addition of the
straw trackers will increase the sensitivity to the EDM by a factor of 100 compared to E821 down to
10−21 e cm. Any non-null observation would be evidence for a new CP-violating interaction. The
measurement can probe models where the CP-violating phases are flavour dependent e.g. those
with non-trivial mass scaling such as Randall-Sundrum extra dimensions [32] that allow for a muon

12
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Figure 8: (LEFT): The placement of the straw tracking stations in the vacuum region in front of a calorime-
ter. (RIGHT): A prototype tracking station comprising a doublet of (U,V) straws.

EDM within 1 order of magnitude of the current limit [31] and thus within the sensitivity reach of
the FNAL experiment.

6. Current Status and Schedule

The experiment has recently been granted CD-1 approval by the DOE and the final technical
decisions will be made in the summer of 2014. The civil construction of the experimental hall
will be completed in February 2014. The infrastructure from the E821 experiment that will be
re-used for the FNAL experiment has already been shipped from BNL to FNAL. In particular the
storage ring was successfully transported in the summer of 2013. The journey of 3,200 miles was
undertaken by truck and barge and took 34 days. A photograph of the barge in transit and arriving
at FNAL is show in Fig. 9.

The current schedule anticipates having the storage ring and yokes reassembled and in the
experimental hall for a test with power and cryogenics at the start of 2015. Testbeams for the
detectors will continue throughout 2014. In 2015 the muon beamlines will be commissioned and
the storage ring shimmed. The vacuum chambers and detectors will be installed in 2016 and first
data is expected before the end of 2016. A data-taking (plus calibration) period of 18 months
is required to reach the statistical goal (0.07 ppm). The accelerator, injection, field and detector
improvements should also allow a systematic uncertainty of 0.07 ppm to be achieved which will
result in a measurement over 4 times more precise than the BNL measurement.

On the same timescale new data and analyses of low energy e+e− cross section data will be
available allowing a reduction in the uncertainty in the SM prediction for aµ . By the end of decade
there will thus be clarity on whether the 3.5 σ anomaly observed by the E821 experiment is indeed
a harbinger of new physics or whether the SM passes one of its most precise tests.
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Figure 9: (LEFT): The storage ring on the Illinois river close to the end of its 3,200 mile journey from BNL
to FNAL. (RIGHT): The storage ring shortly after its arrival at FNAL in July 2013.
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