
P
o
S
(
P
h
o
t
o
n
 
2
0
1
3
)
0
4
7

Review of recent leading-order hadronic vacuum
polarization calculation

Zhiqing Zhang∗

Laboratoire de l’Accélérateur Linéaire, IN2P3/CNRS et Université Paris-Sud 11, Orsay, France
E-mail: zhang@lal.in2p3.fr

The leading-order hadronic contribution to the muon magnetic moment anomaly aµ ≡ (gµ−2)/2,
calculated using a dispersion integral of e+e− annihilation data and τ data, is briefly reviewed.
This contribution has the largest uncertainty to the predicted value of aµ , which differs from the
direct measurement by ∼ 3.6(2.4) standard deviations for the e+e−(τ) based analysis. Recent
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1. Introduction

The Standard Model (SM) has been extremely successful. The only missing particle of the
SM, the Higgs boson, may have been discovered at the LHC [1, 2] and corroborated recently
with property measurements [3, 4]. All SM predictions have been tested often to an extraordinary
precision and no sign of new physics has been found with few exceptions. One such exception is
the well known muon g− 2 anomaly, aµ . The status, as it was given in the PDG 2012 [5] (see
also [6]), is about 3.6 (2.4) standard deviations between the direct measurement dominated by the
E821 experiment at BNL [7] and the corresponding e+e−(τ) based SM predictions.

The SM prediction aSM
µ is usually decomposed into three parts

aSM
µ = aQED

µ +aweak
µ +ahad

µ , (1.1)

corresponding to QED, weak and hadronic loop contributions, respectively. The dominant QED
contribution includes all photonic and leptonic (e,µ,τ) loops with the lowest-order being the clas-
sic α/2π Schwinger contribution. It has been computed recently through 5 loops and has the
following numerical value [8]:

aQED
µ = (11658471.8951±0.0080)×10−10 . (1.2)

The weak part includes loop contributions involving heavy W±, Z and Higgs particles. It is
suppressed by at least a factor α/π ·m2

µ/M2
W ' 4×10−9. The numerical value accounting for the

dominant 1- and 2-loop contributions [9, 10] is

aweak
µ = (15.36±0.10)×10−10 , (1.3)

where the uncertainty stems mainly from quark triangle loops (the uncertainty due to that of the
Higgs mass after its discovery, taken to be 1.5 GeV, becomes now negligible [10]).

The hadronic part involving quark and gluon loop contributions may be further decomposed
into leading-order (LO), higher-order (HO) and light-by-light (LBL) scattering contributions ahad

µ =
ahad,LO

µ + ahad,HO
µ + ahad,LBL

µ . At present, the LO contribution cannot reliably be calculated from
perturbative QCD (pQCD) and is determined instead by a dispersion relation [11]

ahad,LO
µ =

1
3

(
α

π

)2 ∫ ∞

m2
π0γ

ds
K(s)

s
R(0)(s) , (1.4)

where R(0)(s) represents the ratio of the bare cross sections of e+e− annihilation into hadrons to
the point-like muon-pair cross section and K(s) ∼ 1/s is a QED kernel function [12] and gives a
strong weight to low-energy part of the integrand. The precision of ahad,LO

µ depends thus on that of
the e+e− annihilation data in particular that of ρ(770)→ π+π− and it has the largest uncertainty
to aSM

µ and this is why most of the effort from both experimental and theoretical sides went into its
improved determination over the last 20 years or so.

In the following, we shall briefly describe the new development including an update of the τ

spectral functions from ALEPH [13] and discuss a few open issues on the subject.
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2. New development

Three new results1 are discussed in this review:

1. New e+e− → π+π− cross section measurement from KLOE based on its 2002 data [15].
Previously, the cross sections were measured based on the integrated luminosity obtained
by counting Bhabha scattering events and using the corresponding QED cross section pre-
diction [16]. The new measurement is normalized to that of e+e− → µ+µ−(γ) as it was
performed by BaBar [17];

2. New cross section measurements from BaBar in multi-hadronic channels e+e−→ 2π+2π−,
K+K−π+π−, K+K−2π0 [18];

3. Updated ALEPH non-strange spectral functions from hadronic τ decays [13].

The new KLOE measurement has the advantage over the old one in that the systematic un-
certainty (in particular the theoretical uncertainty) is substantially reduced due to cancellation in
the ππγ to µµγ ratio measurement. Indeed, in terms of aµ [ππ] in the energy range between 0.592
and 0.975 GeV, the new measurement contributes 385.1± 1.1stat± 2.6exp± 0.8th to be compared
with the old value of 387.2±0.5stat±2.4exp±2.3th (if not otherwise stated, these and the following
values are given in units of 10−10).

Including the new measurement (KLOE12) in our data combination based on HVPTools [19]
and taking into account the correlation between this measurement with other data sets to our best
knowledge2, we obtain aµ [ππ] = 506.56±2.61stat±2.38syst in the energy range of 0.3−1.8 GeV to
be compared with the corresponding value 507.24±2.87stat±2.56syst excluding this measurement.
The relative impact of the measurement in the combination may be seen in Fig. 1.
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Figure 1: Relative local averaging weight per experiment versus centre-of-mass energy in e+e−→ π+π−

either including (left) or excluding (right) the new KLOE measurement (KLOE 12). Other measurements
are referenced in [20].

1Since the workshop, a few other new results have appeared. One example is the cross section measure-
ment of e+e− → K+K−(γ) with the initial-state radiation method from BaBar [14], which contributes to aµ with
22.93± 0.18stat ± 0.22syst in the energy range from threshold to 1.8 GeV, to be compared with our previous evalua-
tion 21.63±0.27stat±0.68syst based on other data [20].

2The statistical correlations with the KLOE08 measurement (from the common 2π sample) are not available and
were not taken into account.
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The second set of new results concerns multi-hadronic channels e+e−→ 2π+2π−,K+K−π+π−

and K+K−2π0. For the first channel, using the final measurement from BaBar [18] together with
other available data [20], we obtain aµ [2π+2π−] = 13.64±0.03stat±0.36syst to be compared with
our previous evaluation of 13.35± 0.10stat± 0.52syst in which a preliminary version of the BaBar
measurement was used [20]. The new BaBar measurement thus improves both the statistical and
systematic uncertainties of the channel. BaBar has also updated their cross section measurements
for channels K+K−π+π− and K+K−2π0 using about twice of the previously used data sample,
the corresponding aµ are 0.35±0.02 and 0.041±0.007, respectively, to be compared with the old
values of 0.35±0.03 and 0.064±0.012.

The π+π− channel used to be limited in precision, so it was proposed in [21] to transform
the corresponding tau spectral function through an isospin rotation to the e+e− cross section by
σ l=1 (e+e−→ π−π−) = 4πα2/s ·v(τ−→ π−π0ντ) and to provide an independent evaluation after
accounting for all isospin breaking effects [22]. Similar transformations can be made for four-pion
channels. Recently, updated ALEPH non-strange spectra functions from hadronic τ decays [13]
have been made public [23]. Compared to the 2005 ALEPH publication [25], the main improve-
ment results from the use of a new method [24] to unfold the measured mass spectra from detector
effects. This procedure also corrects a previous problem3 in the treatment of the statistical correla-
tions between the unfolded mass bins.

A comparison of the new unfolded mass spectra for ππ0, π3π0 and 3ππ0 channels with the
previous ones [25] is shown in Fig. 2. Reasonable agreement is found everywhere except for
differences at the few percent level in the ππ0 mode near threshold and in the 0.8−1.0GeV2 region.
The new ALEPH ππ0 spectra function has been combined with those from Belle [27], CLEO [28]
and OPAL [29] for calculating aµ [ππ] with the values of 9.82± 0.13exp± 0.04Br± 0.07IB for the
energy range between threshold and 0.36 GeV and 506.4± 1.9exp± 2.2Br± 1.9IB for the energy
range between 0.36 and 1.8 GeV, where the first errors are due to the shape uncertainties of the
mass spectra, which also include very small contributions from the τ mass and |Vud | uncertainties,
the second errors originate from Bππ0 and Be, and the third errors are due to the isospin-breaking
corrections, which are partially anti-correlated between the two energy ranges. These values are
to be compared with the old results [22] of 9.76± 0.14exp± 0.04Br± 0.07IB and 505.5± 2.0exp±
2.2Br±1.9IB.

The new results for 2π2π0 and 4π based on linear combinations of τ−→ π−3π0ντ and τ−→
2π−π+π0ντ , evaluated up to 1.5 GeV, are 14.70± 0.28exp± 1.01Br± 0.40IB and 7.07± 0.41exp±
0.48Br± 0.35IB, respectively, to be compared to the previous results 14.89± 1.22exp± 1.02Br±
0.40IB and 6.31±1.32exp±0.42Br±0.35IB. The large difference in the experimental uncertainties
is not a consequence of the new unfolding but stems from a technical problem in the previous
estimate of shape systematic uncertainties leading to artificially larger values.

The updated spectral functions have also been used to repeat the other analyses of [25]: a
phenomenological fit to the ππ0 mass spectrum and a QCD analysis using the vector, axial-vector
and total non-strange spectral functions. The results are found in agreement with published one
based on the previous set of spectral functions.

Overall the first two sets of the new results have, however, only a small impact on our previ-

3We thank D. Boito for bringing this issue to our attention [26].
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Figure 2: Comparison of the new unfolded spectral functions (red full circles) with those obtained in
Ref. [25] (black open circles). The error bars shown include statistical and all systematic uncertainties.
The inset shows either the old-to-new ratios for ππ0 (where the error bars are those of the newly unfolded
spectra) or a zoom to the peak region for the other channels.

ously published evaluation [20]

ahad,LO
µ = 692.3±1.4±3.1±2.4±0.2±0.3 (2.1)

and therefore they will be included in a future reevaluation. In Eq. (2.1) the first error is statisti-
cal, the second channel-specific systematic, the third common systematic, correlated between at
least two exclusive channels, and fourth and fifth errors stand for the narrow resonance and QCD
uncertainties, respectively.

On the other hand, the new ALEPH results do have a sizable impact on our previous evaluation.
Combining the new results with those from other experiments both for tau and e+e− data, we get

ahad, LO
µ [τ] = 703.0±3.1±1.9±2.4±0.2±0.3 (2.2)

where the first error is τ experimental, the second the uncertainty of isospin-breaking correc-
tions [22], the third e+e− experimental, and the last two the narrow resonance and QCD uncertain-
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ties. This result is to be compared with the previous one 701.5±3.5±1.9±2.4±0.2±0.3 [20].
The 2π and 4π channels account for about 78% of the LO hadronic contribution, the rest is taken
from the e+e− channels and pQCD calculations.

Adding to these results the contributions from ahad,HO
µ =−9.84±0.07 [30], computed using a

similar dispersion relation approach, ahad,LBL
µ = 10.5±2.6 [31], estimated from theoretical model

calculations, as well as aQED
µ and aweak

µ , one gets

aSM
µ [e+e−]=11659180.2±4.9tot , (2.3)

aSM
µ [τ]=11659190.9±5.1tot . (2.4)

The e+e− (τ) based prediction deviates from the direct experimental average [7] of

aexp
µ = 11659208.9±5.4stat±3.3syst (2.5)

by 28.7±8.0 (18.0±8.1), i.e. 3.6σ (2.2σ). A compilation of recent aSM
µ predictions in compari-

son with the experimental average of direct measurements is shown in Fig. 3.
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Figure 3: Compilation of recent results for aSM
µ (in units of 10−11), subtracted by the central value of the

experimental average. The shaded vertical band indicates the experimental error.

3. Open issues

In this section, we discuss a few open issues which need to be resolved or understood before
more precise direct measurements will become available.

In Fig. 3, all recent e+e− based predictions are consistent since the input e+e− data sets used
are largely identical. Take the comparison between DHMZ 10 [20] and HLMNT 11 [30] as an
example, they differ mainly in the data combination and error treatment. This is reflected in Table 1
(extracted from Table 4 in [30]). The difference is comparable to or larger than one of the quoted
errors. In addition, the quoted errors are quite different. It is desirable that these differences can be
understood and reduced in the future.

The difference of 10.7± 4.9, i.e. 2.2σ , between the τ and e+e− based predictions shown in
Eqs. (2.3) and (2.4), is another open issue. Jegerlehner and Szafron claim that the difference can be
explained by the ρ0− γ mixing missing in the τ data [32]. It remains to be checked whether this

6



P
o
S
(
P
h
o
t
o
n
 
2
0
1
3
)
0
4
7

Review of recent leading-order hadronic vacuum polarization calculation Zhiqing Zhang

Channel HLMNT 11 DHMZ 10 diff.
K+K− 22.09±0.46 21.63±0.73 0.46
π+π− 505.65±3.09 507.80±2.84 −2.15

π+π−π0 47.38±0.99 46.00±1.48 1.38

Table 1: Comparison for hadronic contributions to aµ in the energy range from 0.305 to 1.8 GeV from three
K+K−, π+π− and π+π−π0 channels, extracted from Table 4 in [30].

is the real explanation or there are experimental issues related to the e+e− and τ measurements.
Indeed, the e+e− and τ difference can be seen from the relative shape comparison in the energy
range between 0.3 and 1.4 GeV in Fig. 4.
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Figure 4: Relative shape comparison between ALEPH-Belle-CLEO-OPAL combined τ (dark shaded) and
e+e− spectral function (light shaded).

The other related issue is the different shape between BABAR and KLOE π+π− cross section
data (Fig. 5). This difference, leading to an amplified uncertainty in the combination following
the PDG prescription, prevents further error reduction. Among the three data sets from KLOE,
KLOE 08 and KLOE 10 were normalized using luminosity from Bhabha, whereas KLOE 12 was
performed involving the ratio of pion-to-muon pairs as BABAR did.
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Figure 5: Comparison between individual e+e−→ π+π− cross section measurements from BABAR (top)
and KLOE (bottom) and the HVPTools average.

Another problematic channel concerns e+e−→ π+π−2π0 (Fig. 6). There is a large scattering
between measurements from different experiments, in particular between ND and other experi-
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ments. In addition when comparing the e+e− average with the τ average, there is a significant
difference in normalization. This discrepancy deserves further studies and clarification.
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Figure 6: Cross section of e+e− → 2π+2π0 versus centre-of-mass energy. The shaded green (blue) band
gives the HVPTools average for e+e− (τ) data.

4. Summary and perspectives

The deviation of about 3.6 σ between the direct measurement and the e+e− based SM pre-
dictions on aµ is significant but not sufficient for claiming new physics. There is however a good
prospect that the situation can be clarified in the coming years.

On one hand, we have seen in this workshop that new e+e− → hadrons cross section mea-
surements have been or are being performed by BaBar [33]. New and precise measurements are
expected from CMD3 and SND at VEPP-2000 in Novosibirsk, BES3 in Beijing [34] and KLOE-2
at DAΦNE in Frascati [35]. These data may help us to resolve a few open issues in the current e+e−

data and the comparison between the e+e− and τ data, in particular in the π+π− and π+π−2π0

channels. At the moment, the π+π− discrepancy between BABAR and KLOE in some of the
energy ranges prevents us from achieving a better precision in the data combination. Lattice cal-
culations are not yet competitive with the dispersion approach with data but are making significant
progress [36]. The uncertainty of the light-by-light scattering contribution is the next item to im-
prove. Here both measurements of γ∗ physics from BES3 and KLOE-2 and lattice calculations can
help.

On the other hand, the uncertainty of the direct measurement (dominated by the statistical
precision) is now larger than the total uncertainty of the SM predictions. Two new g−2 experiments
from Fermilab and J-PARC are being built and an error reduction by a factor of 4 is expected from
these experiments in a few years from now [37].

The improvements from both sides will either confirm the discrepancy with a much larger
significance or point a way to resolve it.

I am grateful to the fruitful collaboration with my colleagues and friends Michel Davier, Andreas
Hoecker, Bogdan Malaescu and Changzheng Yuan.
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