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1. Introduction

There is a persistent discrepancy, at the three sigma level, for the muorakus magnetic
momentay, = (g — 2)/2 between the experimental value [1] and the theoretical one computed
in the standard model (see e.g. [2] for a review). This calls for a darefaxamination of the
parts of the calculation in which the strong interaction is involved. The leadingribution is
associated with the hadronic vacuum polarization (HVP) function, andbthteloution fromr* 71—,
proportional to the square of the pion form factor, dominates the HVP iitatation. This has
triggered experimental efforts for measuring the pion form factor to higluracy, in particular,
via the initial-state radiation (ISR) method (see [3, 4] and referencesitthertn the efe™ —
yrrt T cross-section, the final-state radiation (FSR) amplitude contributes in adidittbe ISR.
In principle, they could be separated experimentally by performing a parde¢ analysis. The
FSR amplitude is also needed for computing ymet contribution in the HVP unitarity relation.
In practice, the FSR amplitude is often estimated using the scalar QED (sQpE)xapation,
which treats the final-state pions as point-like and non-interacting. Thi®xippation ignores,
in particular, the influence of the strongr S-wave attraction at low energy. A modelling of this
effect using a narrovw-meson gives surprisingly large results [5]. We discuss here an agipro
in which it rescattering is treated in the model independent Omnes method [6]. It caewmesdv
as a generalization of classic work on the— it amplitude [7, 8, 9, 10] and use¥ scattering
experimental results as constraints. A further generalization to the caase ofrtual photons is
being studied [11], which will be applied to the light-by-light hadronic conttitn to the muon
g-—2.

2. Analyticity of partial-waveswhen g # 0

Unitarity alone leads to the well-known Fermi-Watson phase relation. This neldttovever,
has restricted applicability: it applies $6(g?)y — 1t wheng? < 4mé, but not toy*(g?)y — 1t
with ¢? > 4m? [12]. The Omnés method applies to partial-wave projected amplitudes, it cosnbine
the unitarity relation and analyticity properties. We restrict ourselves hdhetelastic scattering
regions < 1 Ge\2 which will limit the applicability of the amplitude to virtualitieg? < 1 Ge\~.
In the case of two real photons, the partial-wave amplitude is an analytitidaraf the rirt energy
s, except for two cuts, the right-hand cut which lies[@m?, ] and the left-hand cut oo, 0].
The discontinuity across the right-hand cut is given by the unitarity relatibese have exactly
the same form foyy and y*y amplitudes. In contrast, the left-hand cuts differ. The main issue is
to properly define this cut and verify that no anomalous threshold ismirese

The left-hand cut is associated with singularities of the unprojected amplitutie crossed
channels. One firstly has the pion pole in tfier™ — ym™ amplitude (so-called Born amplitude)
theJ = 0 projection reads,

FY(Q?) [ 4 1+0,
h6%" (s,0%) = (@) [—”Ln(s)_zq2 , L"(S)_'Oglf;g

s—¢? Lon(s)
with on(s) = /1 —4m2/s. Havingg? # 0 affects the amplitude through the pion form factor
FY(g?) but not only. The singularities are modified: the Born amplitude displays agpste ¢? in

2.1)
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addition to a left-hand cut. Using tlig + i& prescription moves the pole away from the right-hand
cut wheng? > 4. Secondly, one must consider the cuts associatedytith- nit — yrt. These
processes are expected to display sharp resonance effects belew ftag the vector mesons

p, w. We may start with a larg®l. approximation, where resonances generate simple poles in
y*1T— yrt (note that scalar mesons, which violate laMerules are not allowed in this channel).
Using a resonance chiral Lagrangian, the contributions from a vecteswmexchange to the three
independent invariant amplitudes read

s—4m$r—4t+q2+s—4m%—4u+q2
t— M3 u—M3

AY(s.t,¢7) = CyFyn(e?)|

. 1 1

BV(s,t,qZ)=C\/F\/n(q2){2(t_M5)+2(U_M5)} 2.2)
. 1 1

¢ (st.6) = SuRunl@) e ~ 1=

The main difference wheg? # 0 is from the kinematics: foyy — it the Mandelstam variables
t, uare negative while foy*(g?) — yrmrthey lie in the rangef4m?, (/g2 — mz)?]. One must then
take the width of the resonance into account, and this must be done in a nsigteat with the
general analyticity properties for, otherwise, the Omnés method woulceragifilicable. This may
be implemented by using a Kéllén-Lehmann representation, i.e. by replacem, (B.2)

L dt/m

1 _
B _ =
MZ—w Ww) = 4 t—w

, w=t,u (2.3)

One can use for the spectral functioris, My,l"y) e.g. the imaginary part of an ordinary Breit-
Wigner function with an energy dependent width. The funcBW, has a cut instead of a pole

on the first Riemann sheet, while a pole appears on the second sheetut®™iricture of the
partial-wave projection of the vector-exchange amplitude is illustrated onifigthe left figure
shows that the cut extends into the complex plane and approaches thieaightut. The vicinity

of the right-hand cut is illustrated on the right figure. Thanks to the analytipggator and the

o + i€ prescription, no intersection actually occurs (it can be shown that therasses the real
axis at a point strictly belowm#), which guarantees the absence of an anomalous threshold and
the applicability of the usual Omnés method.

3. Themaster formulafor rescattering

In order to discuss rescattering one considers amplitudes which cones$p definitertrt
isospin,y* — y(rtm);, with | = 0,2. They are related to thet 7 and °1® amplitudes by

VHEN (/3R (M
n - 1 2| ~ 2 ’ (3.1)

Hyy ~V3 \/; Hin

We consider an Omneés representation for the isospin amplitudes based erstvicacted dis-

persion relations i.e. involving two polynomial parameters for each isdsplimese parameters,
which depend o, account for the effects of higher mass resonances (like the axitdrvec
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Figure 1: Cut structure of a partial-wave projection of the vectocteange amplitude.

the tensor mesons) not explicitly included as well as the effects of inelastiditg inigher energy
portions of integrals. Beside the properties of analyticity and elastic unittréye are additional
physical constraints that must be imposed. Gauge invariance imposeselzanphitudes minus
the Born term must vanish in the soft photon limit [13] which eliminates one of éinerpeters for
eachl. The helicity amplituded  (s,¢?,z), wherezis the cosine of the scattering angle in the
CMS, can be written as

HL (%2 =H(s? 2+ 5 HiY(sq’2)+H{ (s ¢’ 2) (3.2)
V=p,w

The last term in eq. (3.2) accounts for the rescattering id thed partial-wave, it reads

I, 2\ _ 1,42 A2
HLE5s.2.2) = Qo) {(s- B () + ) [0 )= ) o3

_ qZJ'er(qZ)] +s z F\/n(qz) [SJI Y (S, qZ) _ qZJI,V(qZ,qZ)} } ’

V=p,w

whereQj is the usual Omnés function, given in terms of tirescattering phase-shif,

B s [ a(s)
Qb(s)—exp[nAn%d§g(;_s)] (3.4)

andJ" J'V are the related integrals (see [6]) involving the partial-wave projectiotiseoBorn
and the vector-exchange amplitudes respectively (without the fornr figeta),

12 ds  singl(s) -,
'JI,T[(S,qZ):7-/4m2 (S/)z Sin 0( )H (S/’qZ)

1 s, (8725 —9) Q)] O
1 ° d$  sindl(s) «
@)= e e S, 35)

Finally, J'" = 9J""7(s,q?) /ds ats= 2. One notes that the integrations in eq. (3.5) are well defined
since, as we have argued, the singularities of the partial-wave amplitudest deerlap with the
integration axis. The other two helicity amplitudels _, H, g are affected by rescattering from

J > 2 partial-waves: we have neglected this effect here sincé th@ phase-shift®, are rather
small for energies below 1 GeV.
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Figure 2: Comparison of thery — m1° cross-sections using the amplitud€ . with J = 0 rescattering
andH! = HJr , With experiment.

4. Chiral and experimental constraints

The two arbitrary function&®(g?), b?(g?), are constrained by chiral symmetry. In the exact
chiral limit, the y*y amplitudes for producing &° pair satisfies a soft pion theorem: the combina-
tion of the three invariant amplitudégs, t) +2g%(B(s,t) — C(s,t)) with t = 0 vanishes a = 0 for
any value ofg®. In the real world, this corresponds to an Adler zere atsy = O(n%,), depending
on ¢f, for the helicity amplitudeH! | with t = mZ. The correct chiral behaviour is enforced by
matching the dispersive amplitudes for batt® andr* i~ with the corresponding chiral expan-
sion expressions which are known at NLO [14, 150 and small values af®. For larger values,
in the range? < 1 Ge\2, the dependence should be dominated by the light vector resonances. In-
troducing the combinatiors® = (—b°++/2b?)/v/3 andb® = —(v/2b° +b?) //6 corresponding to
the °1°® and 7t 1r~ channels, the following parametrization encodes these properties

b™(q?) = b"(0)Fy (67) + Fr(c?),

°(QP) = b°(0) + Fr(c?) @4
where
FR(0%) = Bp(GS(0?) — 1) + Beo(BV(0) — 1) (4.2)
involves the usual Gounaris-Sakurai and Breit-Wigner functions, and
Fy () = 12m3[ "LZ( %) + on(AP)Ln(a?) +3] . (4.3)

is generated from the ChPT matching. In the parametrization (4.1) we usednieresonance
function forb” andb® i.e. we neglected the resonance contributiob®aThis is justified from the
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Figure 3: Experimental results fag(ete~ — yn°m®) and our two parameter fit.

fact that the Omnés functions satisfy the inequalily(s)| << |Qo(s)| in the physically relevant re-
gion 4m? < s < ¢ which suppresses the influencedf Thanks to this simplification, determining
the two parameterB,, B, from a(e"e~ — yn°n®) allows one to predict™Rete™ — ym"m).

The values ob"(0), b°(0) can be related to the polarizabilities of the and ther® which
parametrize the pion Compton amplitudes at threshold,

(a0~ Br) = 2o (E7(0) — 42,0 BW () — AmECBWLs () )

(@ =B ) = - (6°(0) — AnEC, - BW () (4.4)

The values of the pion polarizabilities are not yet precisely determinedimemally, the status
of the measurement under way at COMPASS is described in [16]. We wilhase values com-
patible with the NNLO chiral calculations [17, 18]. Fig. 2 shows the resultirgligtion from our
amplitude withg? = 0 for theyy — r°m° cross-section, compared to the experimental results from
refs. [19, 20].

In order to address the case with# 0 we have yet to specify thg? dependence of the three
form factors which enter into the expression of the amplitude (3.2) (3.3.pldn form factor, of
course, is known rather precisely from experiment. Some experimeniatgiat also for theort
form factor in two kinematical regions surrounding the peak ofdhmeson. Théd=,, form factor,
finally, is more difficult to isolate experimentally th&;, because of the width of the We used
the same type of modelling based on superposition of Breit-Wigner type fasdiigether with
symmetry arguments to fix the parameters. The experimental results ferehe— yr°n° cross-
sections from the SND and CMD-2 collaborations [21, 22] can be rejextirather well with our
two-parameter Omnés amplitude. A combined fit to these two data sets gives faardimeters:

B, = 0.05+0.09 GeV 2

4.5
Bw = (—0.37+0.09)-10 1 GeV2 (45)

with x?/Ngof = 38/50. Fig.3. shows the experimental and the fitted theoretical cross sections.
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channel cross-section (g-2)/2
ymrhmr [HBom2 419x10 1
yrrhr (HBOmy*HVrese | (1314 0.30) x 1071
ymrm RV resg2 (0.16+0.05) x 10711
yrPn® RV resq2 (0.33+£0.05) x 10711

Table 1. Central values of tha&rty contributions (see egs. (5.2) and (5.4) in the text) to themgs 2 from
the integration regior/q? < 0.95 GeV.

5. Application to the rrty contributionsto the muon g — 2

The contribution of the hadronic vacuum polarization function to the nguer2 has been
expressed a long time ago by using the analyticity property of the polarizat@tidn [23, 24]. It
can be written in terms of physicat e~ — hadronscross sections

9-2
2

yp = 47;]-_[3 Am%dquu (CI2> " ronso-e+e—ahadrons(q2) (5-1)
(see e.g. [2] for the explicit expression of the functié[n(qz)). A class ofO(a) radiative cor-
rections to the HVP contribution is generated by simply adding in eq. (5.1) tss sections for
ete~ — hadronst y, where the photon is emitted in the final state. The lightesirons+ y state
is ™y which makes a contributiofg — 2) /2|0, = (442+1.9) - 10-*! (see [25]) of a size com-
parable to the error in the measuremenaef The next to lightest states argry. When charged
pions are present, the cross-sect&@iﬁﬁhadmnsw is infrared divergent: in the case af 1"y
the divergence is easily seen to originate from tjigd — s)> denominator ifH22. As is well
known, this divergence is cancelled by part of @@ ) radiative corrections to the"e™ — "
cross-section. Collecting these pieces together, one can then re-writergteontribution to the
muong— 2 as a sum of three infrared finite quantities

g—2 1 [ ED =
z‘my: 47T3Am$,dq2K“(q2) (O’;Qef%,ﬁrry(qz)+Ge+e*—>n+n*y(q2)+ae*e*ﬁnonoy(qz))

(5.2)
where 5
O_sQED

a
ete-—»mtmy = 37(:‘2073%((12)“:%((12)‘2 X r’(qz) (5-3)
(see e.qg. [2] for the explicit expression of the functipnandd is defined by simply removing the
contribution proportional to the Born amplitude squared from the charget gross-sectiond(
is thus not necessarily positive)

. ad 1
Oete —mimy = 12@? 4mzd3(q2—5)0n(3)/_1d2(5i++Sc+f+5§ro) (5.4)

where

2
00 = 2Re [ (HBSM)* (HEY, + HEfe=9)| + [HEY, + HEpee

(5.5)

The contributions to the muan- 2, restricting the integration range in eq. (5.2)\140? <0.95
GeV, within the domain of validity of the model, are shown in table 5. As compargdetidous
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work, we find for the contribution linear iHB°™ (second line in the table) is positive, unlike the
result of ref. [26]. This difference is partly due to the effect of firerescattering, which was not
taken into account in ref. [26] and partly to the somewhat larger integreditge used in that work.
The sum of the last two lines in the table can be compared with the calculatioh {]rbased
on an estimate of the" e~ — yo cross-section. We find that themeson approximation tarrt
rescattering in the present context, leads to an overestimate by a factee@afiproximately.

6. Conclusions

We have proposed a theoretical model of the amplitude for producing appiorfirom one
real plus one virtual photon. It combines the resonance chiral Lg@gnampproach, which is used
to describe resonance effects in the crossed chaphals+ yir and the Omnés approach based
on unitarity/analyticity for treating therr final-state interaction effects in the elastic regime. Our
expression is a generalization of former work on photon-photon scajtgfing, 9, 10] and it
reproduces thgy — T amplitudes in the limit where the virtuality vanishes. We have shown
that the usual Omnés formalism can be applied even in the region4m? where the left and
right-hand cuts seem to overlap, provided appropriate analytic form& @étonance propagators
in the crossed channels are used.

As an application, we have reconsidered the contribution fronyitrestates in the hadronic
vacuum polarization to the muan- 2 in the regiony/q2 < 0.95 GeV and find some differences
with several former approaches. However, in this region, the contribigidominated by
and very well approximated by the sQED formula. Still, it would be of interebetable to extend
the integration range somewhat since one expects a kinematical increhee=&R cross-section
when\/@ >my +mg (withV = p; w, see fig. 3). This would necessitate to account for rescattering
in D-waves as well as properly account for— KK_ineIasticity in the final stat&wave interaction.
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