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1. Introduction

The origin of color confinement has not been clarified yet. A commonly accepted mechanism
for confinement is that based on dual superconductivity of the QCD vacuum [1, 2], deriving from
the condensation of magnetically charged objects. Usual ways to test this mechanism in lattice
QCD simulations consists in studying the vacuum expectation value of magneticallycharged op-
erators [3, 4, 5, 6, 7, 9, 10, 8], or in looking at the properties of Abelan monopole configurations
extracted from non-Abelian gauge configurations. The extraction of Abelian degrees of freedom
in non-Abelian gauge theories relies on Abelian projection, which requiresto choose a reference
adjoint field. No natural adjoint field exists in QCD and that leads to some arbitrariness. A popular
choice is to adopt the projection based on the so-called Maximal Abelian gauge (MAG).

Recently, it has been pointed out that magnetic monopoles evaporating fromthe lowT con-
densate may play a significant role also above deconfinement [11, 12]. Such monopoles, known as
thermal monopoles, are identified, in finiteT lattice simulations, with the monopole currents with
non-trivial wrapping in the Euclidean time direction [12, 13, 14]. Extensive studies of their prop-
erties in theSU(2) Yang-Mills theory [15, 16, 17, 18, 19, 20, 21] have confirmed that the magnetic
component of the Quark-Gluon Plasma is relevant especially right above the deconfinement tem-
peratureTc, while it becomes less and less relevant in the highT limit, where the theory is electri-
cally dominated [22, 23]. Spatial correlations of thermal monopoles show thepresence of screened
Coulomb interactions [15], with a magnetic coupling which grows in the highT regime [22]. The
density of monopoles is logarithmically suppressed at highT, while it becomes significant asTc is
approached from above. The statistical distribution of trajectories with multiple wrappings in the
time direction [24, 16] suggests thermal monopole condensation at a temperature which coincides,
within errors, withTc, thus giving further support to the dual superconductor mechanism.

In this study we extend the investigation toSU(3). The main difference with respect toSU(2)

is that two different species of monopoles can be identified, because the maximal Abelian subgroup
of SU(N) is U(1)(N−1). On the one hand, that makes the extension of the Maximal Abelian Gauge
to SU(3) less trivial; on the other hand, new properties are expected, in relation to the interactions
between the two different monopole species. A full account of our results can be found in Ref. [25].

2. Abelian projection and MAG monopoles in SU(N)

Within a non-AbelianSU(N) gauge theory, an Abelian ’t Hooft tensor [26] can be associated
with any normalized local adjoint fieldφ(x) = ∑a φa(x)Ta (∑a φaφa = const.):

Fµν = tr
(
φ Gµν

)
−

i
g

tr
(
φ

[
Dµφ ,Dνφ

])
(2.1)

In gauges whereφ is constant and points along one of theN− 1 fundamental weights (unitary
gauge),

φ k
0 =

1
N

diag(N−k, . . . ,N−k
︸ ︷︷ ︸

k

,−k, . . . ,−k
︸ ︷︷ ︸

N−k

) , (2.2)

Fµν reduces to a standard electromagnetic tensor (see, e.g., Refs. [27, 28]):

F(k)
µν = tr

(

∂µ(φ k
0Aν)−∂ν(φ k

0Aµ)
)

≡ ∂µa(k)
ν −∂νa(k)

µ , (2.3)
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where

a(k)
µ ≡ tr(φ k

0Aµ) =
k

∑
j=1

(Aµ) j j . (2.4)

If AD
µ is the diagonal part of the gauge field,Aa

µTa, thenAD
µ = ∑N−1

k=1 a(k)
µ αk whereαk is thek-th

simple root. HenceF(k)
µν is the electromagnetic tensor for theU(1) subgroup generated byαk.

In SU(N) gauge theories one can identifyN−1 independentU(1) subgroups. The standard
procedure [29] is to identify a local, hermitian adjoint operatorX(x), i.e. X(x) → G(x)X(x)G−1(x)
under gauge transformations, then fixing the gauge whereX(x) is diagonal

X(x) = XD(x) = diag(X1(x),X2(x), . . . ,XN(x)) . (2.5)

with a given ordering for its eigenvalues [29]:Xj(x) ≥ Xj+1(x). That fixes the gauge apart from a

residualU(1)(N−1) gauge group. A ’t Hooft tensorF(k)
µν can then be associated with any residual

U(1) group, fixingφ(x) = φ k
0 in the diagonal gauge; allU(1) subgroups are mutually neutral,i.e.

they are independent of each other.X(x) can be taken traceless, then one can writeXD(x)

XD(x) =
N−1

∑
k=1

ck(x)φ k
0 , (2.6)

whereck(x) = 1
2tr(αkXD(x)) = Xk(x)− Xk+1(x). A special role is played by pointsx0 where

ck(x0) = 0 for somek, i.e. whereXk(x) = Xk+1(x): in x0 the residual gauge symmetry is enlarged
to the full SU(2) group associated with the simple rootαk. Around x0 one can choose either a
hedgehog solution [26, 30] or, in the unitary gauge, a solution whereX(x) is diagonal anda(k)

µ
contains the contribution from a Coulomb-like magnetic field centered aroundx0. We identifyx0

as the location of a magnetic monopole for the correspondingU(1) subgroup.

Let us now discuss the lattice formulation [31]. Also in this case the Abelian projection is
defined in terms of a local adjoint operatorX(n), where the indexn labels the lattice sites. Having
fixed the diagonal, unitary gauge, one takes the phases diag(φ1

µ(n),φ2
µ(n), . . .φN

µ (n)) of the diagonal
part of each gauge linkUµ(n), and then constructs the Abelian gauge phasesθ k

µ(n), following
Eq. (2.4), as

θ k
µ(n) =

k

∑
j=1

φ j
µ(n) (2.7)

and finally thek-th ’t Hooft tensor (Abelian plaquette) is constructed as

exp
[

iθ k
µν(n)

]

= exp
[

i(θ k
µ(n)+θ k

ν(n+ µ̂)−θ k
µ(n+ ν̂)−θ k

ν(n))
]

. (2.8)

Regarding magnetic monopoles, the recipe of locating points where one of thecoefficientsck

vanishes is not well defined on a discrete lattice, hence the standard procedure is to look for points
from which, in the unitary gauge, a net magnetic flux comes out (De Grand-Toussaint construc-
tion [32]). In particular, monopole currents of are defined as

mk
µ =

1
2π

εµνρσ ∂̂νθ k
ρσ (2.9)
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where∂̂ν is the discretized derivative andθ k
ρσ is the compactified abelian plaquette phase

θ k
µν = θ k

µν +2πnk
µν , nk

µν ∈ N , θ k
µν ∈ [0,2π) . (2.10)

A standard choice is to define the Abelian projection in the so-called Maximal Abelian Gauge
(MAG) [33]. For SU(2), MAG is defined as the gauge which maximizes

FMAG = ∑
µ,n

tr
(
Uµ(n)σ3U

†
µ(n)σ3

)
. (2.11)

FMAG is proportional, apart from a constant term, to the sum of the squared diagonal elements of
the gauge links. On stationary points ofFMAG , the traceless hermitean operator

XMAG(n) = ∑
µ

[
Uµ(n)σ3U

†
µ(n)+U†

µ(n−µ)σ3Uµ(n−µ)
]
, (2.12)

is diagonal and can be taken, for MAG fixed configurations, as the localoperator which defines the
Abelian projection, while in a generic gauge it is obtained by requiring that it transforms as a local
adjoint field. Part of the popuparity of the MAG projection is due to the fact that abelian projected
fields retain most of the original dynamics (Abelian Dominance). The properties of magnetic
monopoles defined after MAG projection also show a nice scaling to the continuum limit.

A possible generalization forSU(3) [35], usually adopted in the literature [36, 37, 38, 39], is to
maximize the sum of the squared diagonal elements of the gauge links. However, by this extension
no diagonal adjoint operator can be naturally identified. Morover, on extremal points, the residual
symmetry is not justU(1)(N−1), since global permutations of group indexes leave the functional
invariant. Such permutations mix the two Abelian charges, which then become ill-defined.

An alternative possibility [40, 41, 42, 25] is the following

F̃MAG = ∑
µ,n

tr
(

Uµ(n)λ̃U†
µ(n) λ̃

)

; λ̃ = diag(λ̃1, λ̃2, . . . λ̃N) , (2.13)

whereλ̃ is a generic element of the Cartan subalgebra. A number of properties canbe shown (see
Ref. [25]). A diagonal Higgs field exists, providedλ̃ has no pair of coinciding eigenvalues

X̃(n) = ∑
µ

[

Uµ(n)λ̃U†
µ(n)+U†

µ(n−µ)λ̃Uµ(n−µ)
]

.

If we requireXj(n) ≥ Xj+1(n) around the perturbative vacuum, then the condition reads

λ̃ =
N−1

∑
k=1

bkφ k
0 ; bk > 0 ∀ k

and the residual symmetry is strictlyU(1)(N−1). That also guarantees that no pair of coinciding
eigenvalues can appear around the perturbative vacuum, whereX(n) = ∑N−1

k=1 ck(n)φ k
0 with ck ∼ bk,

hence the appearance of monopoles requires non-perturbative fluctuations. In the following, we
will adoptbk = 1 ∀ k, which treats all monopole species symmetrically:

λ̃ =
N−1

∑
k=1

φ k
0 = diag

(
N−1

2
,
N−1

2
−1,

N−1
2

−2, . . . ,−
N−1

2

)

.
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Figure 1: Probability of two coinciding monopole currents, normalized by the corresponding single current
probabilities, for different values ofβ and for different choices of the monopoles currents.

To summarize, forSU(3), we consider the MAG corresponding to the functional defined by
λ̃ = diag(1,0,−1), we take the diagonal part of gauge links,UD

µ (n) = diag(eiφ1
µ (n),eiφ2

µ (n),eiφ3
µ (n)),

and determine the Abelian phasesθ 1
µ(n),θ 2

µ(n), corresponding to the two residualU(1) subgroups
θ 1

µ(n) = φ1
µ(n) andθ 2

µ(n) = −φ3
µ(n) (see Eq. (2.7)). Starting fromθ 1

µ(n) andθ 2
µ(n), we determine

the two monopole currentsm1
µ andm2

µ . Monopole currents form closed loops, since∂̂µmk
µ = 0,

and we are interested in particular in loops with a non-trivial wrapping around the Euclidean time
direction, which are identified with thermal monopoles [12, 13, 14, 15].

It is interesting to give a quantitative estimate about the "independence" of the two monopole
species. Let us callρA (ρB) the probability that a given three-dimensional cube of the lattice is
pierced by monopole currentmA

µ (mB
µ ), and byρAB the probability that the cube is pierced by both

currents. If the two currents are independent of each other, one expectsρAB/ρAρB ∼ 1, apart from
small corrections due to physical interactions between them. We have studiedρAB/ρAρB on a 164

lattice, with the Wilson action and for a few values of the inverse gauge coupling β , adopting
different choices of the monopole currents,mA

µ andmB
µ , corresponding to our definition of MAG

and to the standard definition. Results are reported in Fig. 1. In the first case the ratio isO(1) for
all explored values ofβ , as expected for independent currents. On the other hand, when onefixes
the gauge by maximizing the sum of the squared diagonal elements of gauge links, the overlap
between the two currents is clearly visible andρAB/(ρAρB) ≫ 1 for all the explored values ofβ .

It is well known that functionals like that in Eq. (2.13) possess many local maxima, cor-
responding to different Gribov copies. In the case of our interest, every local maximum of the
functionalF̃MAG in Eq. (2.13) will lead to a well defined diagonal operatorX̃(n), hence to a legit-
imate Abelian projection. We will take the Gribov copy which is found first by themaximization
procedure, starting from the original configuration sampled by the Monte-Carlo algorithm: this is
a practical criterion which leads to a correct scaling in the continuum limit [15]. Accurate studies
have been performed forSU(2) thermal monopoles, adopting simulated annealing procedures in
order to get as close as possible to the global maximum of the MAG functional [43, 18, 19]: apart
from a 20% difference in the monopole density, no other significant differences have been found.
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Figure 2: Left: thermal monopole density for various lattice spacings and comparison withSU(2) data.
Right: monopole densities over an extended temperature range together with a fit to Eq. (3.2).

In the future, one should consider other gauge conditions, like the Laplacian gauge [44], which are
safe from ultraviolet fluctuations as the MAG is, but are also free of Gribov copy ambiguities.

3. Numerical results

We will present and discuss results obtained for theSU(3) pure gauge theory discretized with
the Wilson plaquette action and simulated by a standard combination of heat-bath [45] and over-
relaxation [46] algorithms. The temperatureT = 1/(Lta(β )) has been tuned by changing both
the number of temporal sites,Lt , at fixed lattice spacing and by tuning the inverse bare coupling
β at fixed Lt . A number of different spatial sizes have been explored, ranging from 243 × Lt

to 483 × Lt . In order to obtain the temperatureT in units of Tc, we have made use of the non-
perturbative determination ofa(β ) and of the criticalβ values reported in Ref. [47] for various
values ofLt . For each parameter set, thermal monopole trajectories have been determined on a
number of decorrelated configurations ranging from a few hundreds up to a few thousands.

In order to identify thermal monopoles on a given gauge configuration, wefirst look for
monopole currents piercing a given time slice (e.g. , at t = 0) in the temporal direction, then we
follow the current and keep trace of the number of temporal wrappings that the current makes be-
fore coming back to the original detection point. Currents wrapping in the positive or negative
directions are associated respectively with monopoles or antimonopoles. Ifthe current wraps 2
or more times, then it can be associated with 2 or more thermal monopoles undergoing a cyclic
permutation as they go around the thermal cycle: such trajectories are characteristic of the path
integral representation of a system of identical, bosonic particles.

A first quantity that we will look at is the total density of thermal monopoles. Fora given
species that is defined as [12, 13, 14]

ρ =
〈∑~n |Nwrap(m0(~n, t))|〉

Vs
(3.1)

whereNwrap(m0(~n, t)) is the time winding number of the monopole current starting fromm0 at
the lattice site(~n, t), while Vs = (Lsa)3 is the spatial volume. It is convenient to consider the

6
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Figure 3: Left: normalized densities of trajectories withk wrappings, together with fits according to
Eq. (3.3). Right: chemical potentials obtained at various temperatures and lattice spacings, together with
a fit to Eq. (3.4).

dimensionless ratioρ/T3, which for a gas of free quantum particles and antiparticles of massm
should approach a constant value asT ≫ m.

In Fig. 2, left, we showρ/T3 for the first monopole species and for different values ofT and
a; results obtained for the second species are compatible within errors. We notice a good scaling
to the continuum limit. No significant deviations are observed with respect to thedata obtained for
SU(2) in Ref. [15], which are reported in the figure as well. In Fig. 2, right, we report the densities
of both monopoles over an extended temperature range. Contrary to the expectation for a gas of
free particles,ρ/T3 does not approach a constant behavior, even at asymptotically highT; this is in
agreement with a scenario in which the highT phase is electrically dominated, while the magnetic
component is strongly interacting [11]. In particular, perturbative and dimensional reduction con-
siderations predict thatρ/T3 decreases likeg6 [48, 11], whereg(T) is the renormalized running
coupling, so that we have tried to fit data according to

ρ
T3 =

A
(log(T/Λe f f))3 , (3.2)

which works well for all data atT/Tc ≥ 2, with χ2/d.o.f. = 9.5/13. The corresponding fit function
is shown in the figure.

Further information can be obtained by looking at the density of trajectories with multiple
wrappings. They can be related to the properties of monopoles as identicalquantum particles.
Indeed, the path integral representation of the partition function ofN identical particles is made up
of path configurations which are periodic apart from possible permutations of theN particles. Each
configuration presents in generalM closed paths, withM ≤ N and thej-th path wrappingk j times,
so that that∑M

j=1k j = N: such configuration derives from a permutation made up ofM cycles of
sizesk1,k2, . . . kM.

Large cycles are exponentially suppressed at highT, where the system is close to the Boltz-
mann approximation and configurations deviating from the identical permutationgive a negligible
weight to the path integral. Their statistical weight instead increases as quantum effects become

7
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Figure 4: Left: correlation functiong(r) between monopoles and (anti)monopoles of the same species for
various temperatures. Right: as on the left, forT = 1.33Tc and different values of the lattice spacing.

important, and in a critical way as one approaches phenomena like Bose-Einstein condensation
(BEC) [49]. For a set a free bosons of massm, in particular, one finds that the density of paths
wrappingk times (k-cycles) is [50]:

ρk ≡
〈nk〉

Vs
=

e−µ̂k

λ 3 k5/2
(3.3)

wherenk is the number ofk-cycles in one configuration,λ =
√

2π/(mT) is the De Broglie thermal
wavelength, and̂µ ≡−µ/T whereµ is the chemical potential. Aŝµ → 0, higherk-cycles become
more and more frequent and the system approaches criticality.

In Fig. 3, left, we report the density of trajectories wrappingk times,ρk, normalized byρ1, as
a function ofk for a few values ofT, as obtained by simulations on a 483×8 lattice. For eachk the
relative weight ofρk rapidly increases asT approachesTc. Moreover, as it happens forSU(2) [16],
data can be nicely fitted according to the ansatz in Eq. (3.3), giving us access to an effective value
of µ̂(T). The effective chemical potentials are reported in Fig. 3, right, where also results from a
483×7 lattice are shown, in order to check for a correct scaling to the continuumlimit.

Following Ref. [16], we have fitted̂µ(T) according to a critical behavior:

µ̂ = A (T −TBEC)ν ′
(3.4)

obtainingA= 4.64(20), ν ′ = 0.56(3) andTBEC = 1.0003(36)Tc, with χ2/d.o.f. = 1.5/7, including
all available data. Therefore, also in theSU(3) pure gauge theory the distribution of wrapping
trajectories supports a BEC-like phenomenon for magnetic charges happening right atTc, in agree-
ment with a dual superconductor scenario. Notice that forSU(3), since the transition is first order,
the coincidence ofTc with TBEC extracted according to Eq. (3.4) is not expected apriori, since the
transition is first order; in particular, one would expectTBEC≤Tc. However the transition forSU(3)

is quite weak and that could explain the observed coincidence. It will be interesting to repeat the
same analysis forSU(N) gauge theories withN > 3, where the transition gets stronger.

Finally, let us look at the spatial distribution of thermal monopoles at a given Euclidean time
slice, which gives information about the mutual interactions among such objects. In particular, we

8
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T/Tc αM λPTc χ2/d.o.f.

1.333 3.1(4) 0.285(11) 52/36

2 4.3(5) 0.209(6) 48/39

3 5.9(5) 0.151(3) 48/41

4.86 6.4(6) 0.114(3) 47/41

Table 1: Parameters of the interaction potential in Eq. (3.7) for various temperatures, obtained by a common
fit to monopole-monopole and monopole-antimonopole spatial correlations of the same species.

will study the density–density correlation functiongAB(r) ≡ 〈ρA(0)ρB(r)〉/(ρAρB) between any
coupleA andB of thermal monopole species. That is defined as the ratio between the probability
of having a monopole of speciesB at distancer from a given reference monopole of speciesA, and
the same probability in case the monopoles are uncorrelated and randomly distributed,i.e.

gAB(r) =
1

ρB

dNB(r)
4πr2dr

(3.5)

wheredNB(r) is the number of monopoles in a spherical shell of thicknessdr and radiusr around
the reference monopole; in order to minimize lattice artifacts we have used, in place of 4πr2dr, the
effective number of lattice sites contained in the shell. A valuegAB(r) < 1 (gAB(r) > 1) indicates a
repulsive (attractive) interaction.

In Fig. 4 we show the correlation functions among monopoles and antimonopoles of the same
species and for three different temperatures (left), while an additional temperature value is shown
on the right, where data for two different lattice spacings are shown in order to check for the correct
scaling to the continuum limit. Results are qualitatively similar to those obtained forSU(2); a
qualitative agreement is also found with the results for monopole-monopole interactions reported
in Ref. [51], which are based on the standard extension of MAG toSU(3).

As for SU(2), we have extracted the potentialV(r) by looking at the large distance region,
where

gAB(r) ≃ exp(−VAB(r)/T) . (3.6)

and then fitted it according to a screened Coulomb potential,

VAB(r) =
αMe−λPr

r
. (3.7)

We have tried a common fit to monopole-monopole and monopole-antimonopole correlations, in
order to check whether they can be described by the same magnetic coupling: χ2 values are
marginally acceptable and are reported, together with fit results, in Table 1.As for SU(2), the
magnetic couplingαM shows a slowly increasing behavior withT, in agreement with arguments
based on the electric-magnetic duality [11]; a rough agreement is also obtained with the results
of Ref. [51]. The screening length instead decreases withT. The so-called plasma parameter
Γ ≡ αM(4πρ/3T3)1/3 stays always well above 1, as expected for a strongly interacting plasma.

A new aspect ofSU(3), with respect toSU(2), is that we can study correlations among differ-
ent monopole species,gm1 m2(r) andgm1 am2(r). Those are shown in Fig. 5, left, for two different

9
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Figure 5: Left: correlation functiong(r) between monopoles and (anti)monopoles of different species for
various temperatures. Right: as on the left, with a zoom on the intermediate distance region.

values ofT. Correlations are similar to those among monopoles of the same species, but thesign is
opposite, with attraction (repulsion) between monopoles and (anti)monopoles of different species.
This is not unexpected, since the magnetic charge operators of each species are proportional to the
corresponding roots,i.e. λ3 = diag(1, −1, 0)/2 andλ ′

3 = diag(0, 1, −1)/2 for SU(3), hence the
mutual interaction must be proportional to Tr(λ ′

3λ3) = −1/4 (see,e.g. , Ref. [52]), while in the
case of same species monopoles the interaction is proportional to Tr(λ 2

3 ) = Tr(λ ′2
3 ) = 1/2.

New, unexpected features however appear after a more careful observation, as shown in the
right hand side of Fig. 5, where the intermediate distance region has been magnified. After the
first positive peak ingm1m2(r), a small negative well develops forg−1, corresponding to a repul-
sive interaction at intermediate distances; the opposite behavior is visible alsoin the monopole-
antimonopole correlation,gm1am2(r). An oscillating behavior ofg(r) is typical of systems with
partial ordering, like liquids. A possible explanation could be that monopolesof different species
are bound into larger objects (think of calorons and of their monopole constituents), and that such
larger objects weakly repel each other.

It is tempting to relate thermal monopoles to caloron constituents carrying fractional topologi-
cal charges [53], and to make a connection between thermal monopole condensation and the drastic
change inθ dependence observed at the deconfining transition [54, 55, 56, 57, 58, 59]. All that
claims for an extension of this study toSU(N) gauge theories, withN > 3, where the interaction
pattern should be even more interesting.
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