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1. Introduction

The origin of color confinement has not been clarified yet. A commonlymedenechanism
for confinement is that based on dual superconductivity of the QCDwadf,[2], deriving from
the condensation of magnetically charged objects. Usual ways to test thimnigo in lattice
QCD simulations consists in studying the vacuum expectation value of magnetibalged op-
erators [B[K[]5L16]] 1] 9, 1LD] 8], or in looking at the properties of Abet@nopole configurations
extracted from non-Abelian gauge configurations. The extraction efiét degrees of freedom
in non-Abelian gauge theories relies on Abelian projection, which reqtorekoose a reference
adjoint field. No natural adjoint field exists in QCD and that leads to some anibidiss. A popular
choice is to adopt the projection based on the so-called Maximal Abeliare {MAG).

Recently, it has been pointed out that magnetic monopoles evaporatingHeolow T con-
densate may play a significant role also above deconfinefngrt 11, dd.rSonopoles, known as
thermal monopoles, are identified, in finifelattice simulations, with the monopole currents with
non-trivial wrapping in the Euclidean time directidn][12] [[3, 14]. Extemsitudies of their prop-
erties in theSU(2) Yang-Mills theory [15[ 16} 17, 19, 19, 10,]21] have confirmed that thgrmatic
component of the Quark-Gluon Plasma is relevant especially right abewtettonfinement tem-
peraturele, while it becomes less and less relevant in the Aigimit, where the theory is electri-
cally dominated[[22, 23]. Spatial correlations of thermal monopoles shoprésence of screened
Coulomb interactiond]15], with a magnetic coupling which grows in the Righgime [2B]. The
density of monopoles is logarithmically suppressed at Rigivhile it becomes significant &3 is
approached from above. The statistical distribution of trajectories with multigepings in the
time direction [24[ 36] suggests thermal monopole condensation at a temmpewvhioh coincides,
within errors, withTg, thus giving further support to the dual superconductor mechanism.

In this study we extend the investigation$t)(3). The main difference with respect 8J(2)
is that two different species of monopoles can be identified, because dmahAbelian subgroup
of SU(N) isU (1)(N-1. On the one hand, that makes the extension of the Maximal Abelian Gauge
to SU(3) less trivial; on the other hand, new properties are expected, in relatioe totéractions
between the two different monopole species. A full account of outteesan be found in Ref[]25].

2. Abelian projection and MAG monopolesin SU(N)

Within a non-AbelianrSU(N) gauge theory, an Abelian 't Hooft tens¢r][26] can be associated
with any normalized local adjoint fielg(x) = 3 , ¢*(X) T2 (3 4 ¢?@* = const.):

Fov=tr (@ Guy) —Iétr(q)[Du(p, Dvol) (2.1)

In gauges where is constant and points along one of the- 1 fundamental weights (unitary
gauge),

qﬁ:%diag(N—k,...,N—k,—k,...,—k), (2.2)
k N—k
Fuv reduces to a standard electromagnetic tensor (see, e.g.,[REfs] 27, 28]
Fiv) = tr (3 (@A) — Oy (@A) ) = dual — vl (2.3)
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where
k
ald =tr(gka,) = z (2.4)

If AD is the diagonal part of the gauge fiekf; T2, thenAD ZE‘ fauk)ak whereaX is thek-th

simple root. Hencﬁﬁ\) is the electromagnetic tensor for tbg1) subgroup generated tmf.

In SU(N) gauge theories one can identify— 1 independent (1) subgroups. The standard
procedure[[29] is to identify a local, hermitian adjoint operat¢x), i.e. X(x) — G(X)X(x)G1(x)
under gauge transformations, then fixing the gauge wKéxgis diagonal

X(x) = XP(x) = diag(X1(x), X2(X), ..., Xn (X)) (2.5)

with a given ordering for its eigenvalugs J29; (x) > Xj;1(x). That fixes the gauge apart from a
residualu (1)N-Y gauge group. A 't Hooft tensdﬁ%) can then be associated with any residual
U(1) group, fixing@(x) = qg‘ in the diagonal gauge; dll (1) subgroups are mutually neutrak.
they are independent of each oth¥é(x) can be taken traceless, then one can wW¢Réx)

N—-1
= 3 S0l (2.6)
=1

where ¢¥(x) = 3tr(a*XP(x)) = X«(X) — X:1(X). A special role is played by point& where
cX(x0) = 0 for somek, i.e. whereXy(x) = X¢11(X): in X the residual gauge symmetry is enlarged
to the full SU(2) group associated with the simple ramf. Aroundx, one can choose either a
hedgehog solutior{ T4, BO] or, in the unitary gauge, a solution wKéxg is diagonal andaﬁ()
contains the contribution from a Coulomb-like magnetic field centered amind/e identify X

as the location of a magnetic monopole for the correspondifig subgroup.

Let us now discuss the lattice formulatidn][31]. Also in this case the Abeliajegtion is
defined in terms of a local adjoint opera(n), where the index labels the lattice sites. Having
fixed the diagonal, unitary gauge, one takes the phaseggiag, @7 (n), ... @} (n)) of the diagonal
part of each gauge linkl,(n), and then constructs the Abelian gauge pheﬂéﬂs), following

Eq. 2.3), as
ko
=y @ (2.7)
=1

and finally thek-th 't Hooft tensor (Abelian plaquette) is constructed as
exp|i6f, (n)| = exp|i(Of(n) + 6l(n+ 1) - Bf(n+9) - O(n) . (2.8)

Regarding magnetic monopoles, the recipe of locating points where one ajeffiecientsck
vanishes is not well defined on a discrete lattice, hence the standagatipreds to look for points
from which, in the unitary gauge, a net magnetic flux comes out (De GFfandsaint construc-
tion [B3]). In particular, monopole currents of are defined as

m = swpoave (2.9)

po
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whereza?v is the discretized derivative arﬁia is the compactified abelian plaquette phase

ok, =8, +2m,, n<, eN, By, €[0,2m). (2.10)

A standard choice is to define the Abelian projection in the so-called Maximelis&kbGauge
(MAG) [BF]. For SU(2), MAG is defined as the gauge which maximizes

Fuac = 3 tr (Uu(n)oaU () o3) . (2.11)
u,n

Fuac is proportional, apart from a constant term, to the sum of the squaredr@ibglements of
the gauge links. On stationary pointskfac, the traceless hermitean operator

XYM€ (n) = § [Uu(n)oauf(n) + UL (n— p)osUu(n—p)] (2.12)
[
is diagonal and can be taken, for MAG fixed configurations, as the égeaator which defines the
Abelian projection, while in a generic gauge it is obtained by requiring thanstorms as a local
adjoint field. Part of the popuparity of the MAG projection is due to the faat #ibelian projected
fields retain most of the original dynamics (Abelian Dominance). The ptiegeof magnetic
monopoles defined after MAG projection also show a nice scaling to the cantitimnit.

A possible generalization f@U(3) [BT], usually adopted in the literaturg [36] 7} Bg, 39], is to
maximize the sum of the squared diagonal elements of the gauge links. Hptethds extension
no diagonal adjoint operator can be naturally identified. Morover, areeal points, the residual
symmetry is not just (1)(N-D | since global permutations of group indexes leave the functional
invariant. Such permutations mix the two Abelian charges, which then beconeiiiked.

An alternative possibility[[4q, 41, #2, 5] is the following

IEMAG = z tr (U“(n)f\ug(n);\) ) X = diag(;\lj\z, .. ;\N) R (213)
in

where) is a generic element of the Cartan subalgebra. A number of propertid®ecdrown (see
Ref. [23]). A diagonal Higgs field exists, providddhas no pair of coinciding eigenvalues

XM=Y [uu(n)iu;(n) +UJ(n— AU (n— u)] .
]

If we requireX;(n) > Xj;1(n) around the perturbative vacuum, then the condition reads
_ N-1
A=3Sbe;  b>0 vk
K=1

and the residual symmetry is strictly(1)(N-Y. That also guarantees that no pair of coinciding
eigenvalues can appear around the perturbative vacuum, Wiere= 3 R c*(n) g with c ~ b,
hence the appearance of monopoles requires non-perturbativeafiants In the following, we
will adoptbX = 1 ¥ k, which treats all monopole species symmetrically:

~ N1 N—1N-1 N—1 N—1
i— q,g:diag< N1y _2,...,_).
k; 2 2 2 2
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Figure 1: Probability of two coinciding monopole currents, normatizoy the corresponding single current
probabilities, for different values ¢& and for different choices of the monopoles currents.

To summarize, foSU(3), we consider the MAG corresponding to the functional defined by
A = diag(1,0, 1), we take the diagonal part of gauge links? (n) = diag(€% (™, &%, g9im),
and determine the Abelian phaﬁﬁ(n), Gﬁ(n), corresponding to the two residua(1) subgroups
6:(n) = @i(n) andB3(n) = —@3(n) (see Eq.[(2]7)). Starting frody;(n) and83(n), we determine
the two monopole currenm}, andmﬁ. Monopole currents form closed loops, sir@gm‘[l =0,
and we are interested in particular in loops with a non-trivial wrappingratéle Euclidean time
direction, which are identified with thermal monopoleq [13,[1B[ 1}, 15].

It is interesting to give a quantitative estimate about the "independenceg bizthmonopole
species. Let us capa (pg) the probability that a given three-dimensional cube of the lattice is
pierced by monopole curremﬁ (mfj), and bypag the probability that the cube is pierced by both
currents. If the two currents are independent of each other, oreetsgas/paps ~ 1, apart from
small corrections due to physical interactions between them. We have shy@igohpg on a 16
lattice, with the Wilson action and for a few values of the inverse gauge cauliradopting
different choices of the monopole curremq’j andm2, corresponding to our definition of MAG
and to the standard definition. Results are reported in[Fig. 1. In the fasttha ratio i<O(1) for
all explored values 08, as expected for independent currents. On the other hand, whdixese
the gauge by maximizing the sum of the squared diagonal elements of gausiettiakoverlap
between the two currents is clearly visible gng/(paps) > 1 for all the explored values ¢.

It is well known that functionals like that in Eq[ (2]13) possess many locadime cor-
responding to different Gribov copies. In the case of our interestydweal maximum of the
functional Fuac in Eq. (2.1B) will lead to a well defined diagonal opera)ft(n), hence to a legit-
imate Abelian projection. We will take the Gribov copy which is found first byrtreximization
procedure, starting from the original configuration sampled by the MGaté algorithm: this is
a practical criterion which leads to a correct scaling in the continuum I[njit [ABturate studies
have been performed f@U(2) thermal monopoles, adopting simulated annealing procedures in
order to get as close as possible to the global maximum of the MAG funct@@®4L [IP]: apart
from a 20% difference in the monopole density, ho other significant diffezs have been found.
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Figure 2: Left: thermal monopole density for various lattice spasitagnd comparison witlBU(2) data.
Right: monopole densities over an extended temperatugeragether with a fit to Eqm.Z).

In the future, one should consider other gauge conditions, like the Liaplgauge[[44], which are
safe from ultraviolet fluctuations as the MAG is, but are also free of Grdopy ambiguities.

3. Numerical results

We will present and discuss results obtained for3hg3) pure gauge theory discretized with
the Wilson plaquette action and simulated by a standard combination of heafBatnfl over-
relaxation [4p] algorithms. The temperatufe= 1/(L;a(B)) has been tuned by changing both
the number of temporal sitek;, at fixed lattice spacing and by tuning the inverse bare coupling
B at fixedL;. A number of different spatial sizes have been explored, ranging 24°* x L;
to 48 x L;. In order to obtain the temperatufein units of T, we have made use of the non-
perturbative determination @f(8) and of the critical3 values reported in Ref[ [#7] for various
values ofL;. For each parameter set, thermal monopole trajectories have been deteomine
number of decorrelated configurations ranging from a few hundneds a few thousands.

In order to identify thermal monopoles on a given gauge configurationfiratelook for
monopole currents piercing a given time slieeg(, att = 0) in the temporal direction, then we
follow the current and keep trace of the number of temporal wrappingsh@aurrent makes be-
fore coming back to the original detection point. Currents wrapping in théo®sr negative
directions are associated respectively with monopoles or antimonopolése ¢urrent wraps 2
or more times, then it can be associated with 2 or more thermal monopoles oindeagcyclic
permutation as they go around the thermal cycle: such trajectories astevatic of the path
integral representation of a system of identical, bosonic particles.

A first quantity that we will look at is the total density of thermal monopoles. dgiven

species that is defined ds[{2] L3} 14]

(3 |Nwrap(mo(M, 1)) )
Vs

p= (3.1)

where Nyrap(mo(i,t)) is the time winding number of the monopole current starting frognat
the lattice site(f,t), while Vs = (Lsa)? is the spatial volume. It is convenient to consider the
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Figure 3: Left: normalized densities of trajectories wikhwrappings, together with fits according to
Eq. ). Right: chemical potentials obtained at varimperatures and lattice spacings, together with

afit to Eq. (3.).

dimensionless ratip /T3, which for a gas of free quantum particles and antiparticles of mmss
should approach a constant valueras> m.

In Fig. 2, left, we showp /T2 for the first monopole species and for different value¥ @ind
a; results obtained for the second species are compatible within errorsote a good scaling
to the continuum limit. No significant deviations are observed with respect wettasobtained for
SU(2) in Ref. [L3], which are reported in the figure as well. In fg. 2, right, eort the densities
of both monopoles over an extended temperature range. Contrary topbetaion for a gas of
free particlesp /T2 does not approach a constant behavior, even at asymptoticallif htgrs is in
agreement with a scenario in which the hifiphase is electrically dominated, while the magnetic
component is strongly interactinfg J11]. In particular, perturbative d@nedsional reduction con-
siderations predict thaa /T3 decreases likg® [#g, [[1], whereg(T) is the renormalized running
coupling, so that we have tried to fit data according to

A
(log(T /Net1))?’

P
T3

(3.2)

which works well for all data af /Tc > 2, with x2/d.o.f. = 9.5/13. The corresponding fit function
is shown in the figure.

Further information can be obtained by looking at the density of trajectorihsmultiple
wrappings. They can be related to the properties of monopoles as ideqiaaium particles.
Indeed, the path integral representation of the partition functidtidentical particles is made up
of path configurations which are periodic apart from possible permusatibtmeN particles. Each
configuration presents in geneMlclosed paths, witiM < N and thej-th path wrapping; times,
so that thatz'}"zl k; = N: such configuration derives from a permutation made uplalycles of
sizesky, Ky, ... ky.

Large cycles are exponentially suppressed at Rigtvhere the system is close to the Boltz-
mann approximation and configurations deviating from the identical permugitiera negligible
weight to the path integral. Their statistical weight instead increases asuquaifects become
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Figure 4: Left: correlation functiorg(r) between monopoles and (antiymonopoles of the same species f
various temperatures. Right: as on the left, Tor 1.33T; and different values of the lattice spacing.

important, and in a critical way as one approaches phenomena like BosteiRinondensation
(BEC) [49]. For a set a free bosons of massin particular, one finds that the density of paths
wrappingk times -cycles) is [GP]:

(ng et

_ Nk -
= T e (33)

whereny is the number ok-cycles in one configuration, = \/2m/(mT) is the De Broglie thermal
wavelength, angi = —u /T wherep is the chemical potential. Ag — 0, higherk-cycles become
more and more frequent and the system approaches criticality.

In Fig. 3, left, we report the density of trajectories wrapplktimes, ok, normalized byps, as
a function ofk for a few values of, as obtained by simulations on a®488 lattice. For eack the
relative weight ofoy rapidly increases &b approache3.. Moreover, as it happens f&U(2) [[q],
data can be nicely fitted according to the ansatz in Eq (3.3), giving ussitwan effective value
of 1(T). The effective chemical potentials are reported in fig. 3, right, wheceraults from a
48% x 7 lattice are shown, in order to check for a correct scaling to the contirioim

Following Ref. [1$], we have fitted(T) according to a critical behavior:

fi=A(T—Tgeo)” (3.4)

obtainingA = 4.64(20), v/ = 0.56(3) andTgec = 1.000336) T, with x?/d.o.f. = 1.5/7, including

all available data. Therefore, also in tB&(3) pure gauge theory the distribution of wrapping
trajectories supports a BEC-like phenomenon for magnetic chargesrtiagpight atTe, in agree-
ment with a dual superconductor scenario. Notice thaSfd(3), since the transition is first order,
the coincidence of; with Tgec extracted according to Ed. (B.4) is not expected apriori, since the
transition is first order; in particular, one would exp@gtc < Tc. However the transition foBU(3)

is quite weak and that could explain the observed coincidence. It will beesttag to repeat the
same analysis fdBU(N) gauge theories witN > 3, where the transition gets stronger.

Finally, let us look at the spatial distribution of thermal monopoles at a givertidean time
slice, which gives information about the mutual interactions among suchtsbjagarticular, we
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T/Te | am Ap T x?/d.of.

1.333] 3.1(4) | 0.285(11)| 52/36
2 | 43(5)| 0.2096)| 48/39
3 | 59(5)| 0.151(3)| 48/41

4.86 | 6.4(6)| 0.114(3)| 47/41

Table 1. Parameters of the interaction potential in @(3.7) forowss temperatures, obtained by a common
fit to monopole-monopole and monopole-antimonopole spetdizelations of the same species.

will study the density—density correlation functigag(r) = (p*(0)pB(r))/(p”pB) between any
coupleA andB of thermal monopole species. That is defined as the ratio between théjtitgba
of having a monopole of speci8sat distance from a given reference monopole of spedeand
the same probability in case the monopoles are uncorrelated and randonbutbstji.e.

1 dNB(r)

gas(r) = 08 4rrdr (3.5)

wheredNB(r) is the number of monopoles in a spherical shell of thickmsand radius around

the reference monopole; in order to minimize lattice artifacts we have usedca@fidm?dr, the

effective number of lattice sites contained in the shell. A valagr) < 1 (gag(r) > 1) indicates a
repulsive (attractive) interaction.

In Fig.[4 we show the correlation functions among monopoles and antimorsagfdlee same
species and for three different temperatures (left), while an additiomgddeature value is shown
on the right, where data for two different lattice spacings are shown &r toccheck for the correct
scaling to the continuum limit. Results are qualitatively similar to those obtaine8U@2); a
gualitative agreement is also found with the results for monopole-monopotagdtitns reported
in Ref. [5]], which are based on the standard extension of MASU(S).

As for SU(2), we have extracted the potenti(r) by looking at the large distance region,
where

gAB(r) ~ exp(—VAB(r)/T). (3.6)

and then fitted it according to a screened Coulomb potential,

aye e’

VAB(r) = p

(3.7)

We have tried a common fit to monopole-monopole and monopole-antimonopodtations, in
order to check whether they can be described by the same magnetic coupfinglues are
marginally acceptable and are reported, together with fit results, in Thbkes for SU(2), the
magnetic couplingxy shows a slowly increasing behavior wilh in agreement with arguments
based on the electric-magnetic dualify][11]; a rough agreement is also edbtaith the results
of Ref. [61]. The screening length instead decreases WithThe so-called plasma parameter
r=aw(4np /3T3)1/ 3 stays always well above 1, as expected for a strongly interacting plasma.
A new aspect o8U(3), with respect t&BU(2), is that we can study correlations among differ-
ent monopole speciegyz(r) andgy4.2(r). Those are shown in Fi§] 5, left, for two different
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Figure5: Left: correlation functiorg(r) between monopoles and (antiymonopoles of different spefoie
various temperatures. Right: as on the left, with a zoom erirttermediate distance region.

values ofT. Correlations are similar to those among monopoles of the same species, sighttse
opposite, with attraction (repulsion) between monopoles and (antiymonogaléfecent species.
This is not unexpected, since the magnetic charge operators of eadsspe proportional to the
corresponding roots,e. Az = diag(1, —1, 0)/2 andA; = diag(0, 1, —1)/2 for SU(3), hence the
mutual interaction must be proportional to(ZfA3) = —1/4 (see.e.g., Ref. [52]), while in the
case of same species monopoles the interaction is proportionatg) Fe Tr(A2) = 1/2.

New, unexpected features however appear after a more caretnvabien, as shown in the
right hand side of Fig[]5, where the intermediate distance region has begnified After the
first positive peak irg,u,2(r), @ small negative well develops fgr— 1, corresponding to a repul-
sive interaction at intermediate distances; the opposite behavior is visibleals® monopole-
antimonopole correlationg,;,,2(r). An oscillating behavior ofj(r) is typical of systems with
partial ordering, like liquids. A possible explanation could be that monogmildgferent species
are bound into larger objects (think of calorons and of their monopolditoests), and that such
larger objects weakly repel each other.

It is tempting to relate thermal monopoles to caloron constituents carrying fiattapologi-
cal chargeq[53], and to make a connection between thermal monopdiersation and the drastic
change in6 dependence observed at the deconfining transifign[[34, 5%, 635835 All that
claims for an extension of this study 8J(N) gauge theories, withl > 3, where the interaction
pattern should be even more interesting.
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