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1. Introduction

The dual superconductor picture [[I]] for the Yang-Mills theory vacuum is an attractive hy-
pothesis for explaining quark confinement. The key ingredients of this picture are the existence of
chromomagnetic monopole condensatioand thedual Meissner effect For the dual supercon-
ductor picture for the Yang-Mills theory vacuum to be true, the chromomagnetic monopole con-
densation must give a more stable vacuum than the perturbative one. In view of this, SByvidy [
has argued based on the general analysis of the renormalization group equationdiiaatheal
generation of chromomagnetic fieldshould occur in the Yang-Mills theory, i.e., a non-Abelian
gauge theory with asymptotic freedom. Indeed, Savvidy has shown that the vacuum with non-
vanishinghomogeneous chromomagnetic fieldtrength, i.e., the so-calléavvidy vacuumhas
lower energy density than the perturbative vacuum with zero chromomagnetic field. The effective
potentialV (H) of the homogeneous chromomagnetic fielchas the form inrSU(2) Yang-Mills
theory:
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VSavvidy(H):HZ—BogH2<|ni2+0>, l303:—§<0- (1.1)
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Then the effective potentid (H) of the homogeneous chromomagnetic fielchas an absolute
minimum atH = Hg ## 0 away fromH = 0. The chromomagnetic condensation gives more stable
vacuum than the perturbative one.

Immediately after his proposal, however, N.K.Nielsen and OleBgihdve shown that the
effective potentiaV/ (H) of the homogeneous chromomagnetic figldwhen calculated explicitly
at one-loop level in the perturbation theory under the background gauge, develops a pure imaginary
part:

1.5 Bg?l [, oH . g?H?
Vio(H) = 5H?— =225 SH? (In 2 e) H g (1.2)

in addition to the real part which agrees exactly with the Savvidy’s result. This is callélidsen-
Olesen (NO) instability of the Savvidy vacuum. The presence of the pure imaginary part implies
that the Savvidy vacuum gets unstable due to gluon—antigluon pair annihilation.

This result is easily understood based on the following observation. In the homogeneous
external chromomagnetic field, the energy eigenvalug, of the masslesoff-diagona) gluons
with the spinS=1 (S, = £1) is given by

where p, denotes the momentum in those space-time directions which are not affected by the
magnetic field and the indexis a discrete quantum number which labelslthedau levels Then
the NO instability is understood as originating from tehyon modewith n=0 andS, = -1
(or the lowest Landau level for the gluon with spin one antiparallel to the external chromomagnetic

field), since
E, =1/P? —gH, (1.4)

becomes pure imaginary whqaﬁ < gH. In other words, the NO instability of the Savvidy vacuum
with homogeneous chromomagnetic condensation is due to the existence of the tachyon mode
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corresponding to the lowest Landau level which is realized by the applied external homogeneous
chromomagnetic field.

A way to circumvent the NO instability is to introduce thegnetic domains(domain struc-
ture) with a finite extension into the vacuuld].[ The physical vacuum in Yang-Mills theory is split
into an infinite number of domains with macroscopic extensions. Inside each such domain there
is a nontrivial configuration of chromomagnetic field and the tachyon mode does not appear in the
domain supporting?® > gH. This resolution for the NO instability of Yang-Mills theory is called
theCopenhagen vacuunor Spaghetti vacuum It is instructive to recall that the vortices in a type
Il superconductor are neatly arranged into a hexagonal or occasionally square lattice.

The Copenhagen vacuum is a well-done model of the Yang-Mills vacuum. The domain struc-
ture introduces an infrared cutoff which prevents the momenta from taking the smaller values caus-
ing the instability. However, it is quite complicated to work out the dynamics of the Yang-Mills
theory on the concrete inhomogeneous background. Therefore, there have been a lot of works
trying to overcome the NO instability for the homogeneous chromomagnetic field.

In view of these, we reexamine the NO instability in 88)(2) Yang-Mills theory in the
framework of thefunctional renormalization group (FRG) [ as a realization of th&Vilsonian
renormalization group. The FRG enables us to examine the effects caused by changing the in-
frared cutoff in a systematic way. In this paper we follow the methods developed for FRG in
[6, 2 B @ [IJ. We point out the following result£f].

1. The Nielsen-Olesen instabilityin the effective potentia¥ (H) for the homogeneous chro-
momagnetic fieldH, i.e., the imaginary part I/ (H) of V(H) disappears (or is absent from
the beginning) in the framework of the FRG. (Therefore, the Nielsen-Olesen instability is
an artifact of the one-loop calculation in the perturbation theory and it disappears in the
non-perturbative framework beyond the perturbation theory.)

2. However, this result does not necessarily guarantee the automatic existence of the non-trivial
homogeneous chromomagnetic fielg~ 0 as the minimum of the effective potentig{H ),
such thav/ (Hg) < V(H = 0) = 0. (Therefore, the absence of the Nielsen-Olesen instability
and the existence of the non-trivial minimum for the homogeneous chromomagnetic field in
the effective potential are different problems to be considered independently.)

3. As a physical mechanism for maintaining the stability even for the small infrared cutoff,
we propose thelynamical mass generatiorfor the off-diagonal gluons (and off-diagonal
ghosts), which is related to the BRST-invariaacuum condensation of mass-dimension
two [12 [13 [I4 [1F. This gives a consistent picture compatible with the absence of the
instability. (This leads to thAbelian dominance[[1g): in the string tension extracted from
the Wilson loop average and exponential-falloff of the off-diagonal gluon propag8ifrs [
[I8 19 as well as the magnetic monopole dominance in the Maximal Abelian gauge.)

2. Complex-valued flow equation in the FRG

The effective average actiorl o with the infrared cutoffA is obtained by solving the flow
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equation[f]:
ATp = SSTH(M? 4Ry - a4Ry), & = A S
2 A ’ dn’
where STr denotes the “supertrace” introduced for writing both commuting fields (e.g., gluons )
and anticommuting fields (e.g., quarks and the Faddeev-Popov gm;%ﬁs)theinfrared cutoff
function for the field® which is introduced as thefrared regulator term in the form: [ ®'RY®,

and Ff\z) denotes the second functional derivative§ gfwith respect to the field variables:

(2.1)

5 _ 3
) _

corresponding to the inverse exact propagator at the scalée ordinaryeffective actionl” as the
generating functional of the one-particle irreducible vertex functions is obtained in the\lijyGt
M= |im/\lo A

We consider the complex-valued effective average adtjos I'j'ﬁ +i|",\ which is decomposed
into the real part',Ff .= Rd A and the imaginary paft',\ :=ImlA. Thenitis shown (see Appendix
A of [[I]]) that the flow equation is decomposed into two parts:

ark :%STr{ [(TR? 4 Rn)Z+ (M) HTRD + Ra)GRA | (2.3)
ar' = — %STr{ (TR 4 Ra)?+ (M) AP aRn | (2.4)

We find thatthe identically vanishing imaginary paft) := Imr' = 0 is a solution corre-
sponding to dixed point
ImFA =0 for any value ofA, (2.5)

in sharp contrast with the real part. ITf,\ # 0 for a certain value of\, it does not maintain the
same value, i.e.ﬁ(l",\) =# 0. Thus the problem of showing the absence of the imaginary part
ImI™ = lima oImF A in the effective actiol = lima ol A is reduced to proving the vanishing of the
imaginary part Ini o in the effective average actidn, for a sufficiently large value of:

Iml A =0 for a certain value ofA > 1. (2.6)

Whenr'!, = 0, the flow equation foF R turns into the standard flow equation.

3. Flow equation in the chromomagnetic background

We consider th®-dimensional Euclidean Yang-Mills theory. We decomposesiig2) Yang-
Mills field 7, = <7{*T* into thebackground field ¥, = ¥/#"T# andthe quantum fluctuation field
2y = 2 TA whereT# = 70* with o being the Pauli matrices\(= 1,2, 3):

Ap =Y+ 2 (A=1273). (3.1)
We can choose without loss of generality the diagonal figlds the background field:

V(%) = ™Vy(x), (3.2)
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and the off-diagonal fielAﬁ (a=1,2) as the quantum fluctuation field:

2Z0(x) ="M (x), (a=1,2). (3.3)
In what follows, we prepare the diagonal fiéd(x) of the form:
1
2
so that thex-independenhomogeneous background field strengtlis realized:

Vi (X) = sxvHuy, (3.4)

T V(%) =04 H70) = 0,130 + BP0 (X) = 872 (0uVo (X) — OV (X)) = 8" M.
(3.5)

Thetotal effective average actior  is specified by giving the gauge-invariant pﬁ}{l", the
gauge-fixing (GF) part §F and the associated Faddeev-Popov (FP) ghost j8rt

Fa=T4rSFyrfP (3.6)

We choose thbackground gaugeas the gauge fixing condition to maintain the gauge invari-
ance for the background field. In the above choice for the background@igy the background
gauge reduces to thmaximal Abelian (MA) gauge:

= 2NN, =0, ZEPNV] = 0,6% - ge®BV,. (3.7)
Thenthe gauge-fixing termis given by
2
/dD (z3oM18) (3.8)

wherea denotes the gauge-fixing parameter.
TheFP ghost termis determined according to the standard procedure (seelZl).af

P [ Px(C IV ZRNICE — P O ECICUL AL 1 IC g R TV AL IS (39)

For the gauge-invariant palFﬂ,r\‘V, we adopt the ansatz, a functigv, of the gauge-invariant
term® constructed from the field strengthy,, (/] := 0./ — 0,/ + B/ B/

i 1
rinv _ / 4P (0(X), ©:= (Fhl])”. (3.10)
O is decomposed ag]]
1 1 1 2
0 =7 (FAI) + A (Qfh + 2V 78] ) A + 5 (0A8AY ), (3.11)
Q= — (298 + 206, (29 = 22NV 28V, (3.12)
In the vanishing off-diagonal field limi& — 0, © is reduced to
1 2 1 2 1
Ola—o =7 (Fin[V1(0)" = 7 (Vv () — AVu(X))” = SH?, (3.13)
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whereH := VHZ = aBHaB > 0.

The off-diagonal gluon fields (and off-diagonal ghost fields?, C?) should be integrated
out in the framewaork of the FRG following the idea of the Wilsonian renormalization group. For
this purpose, we introduce thefrared regulator term AS, for the off-diagonal gluorAg; and
off-diagonal ghost€?, C? by

85, = [ [ 34 (PIRuw ($2)5A5(0) + C (RN C(~p)| (ab=12).  (314)

where [, := f(gT)pD denotes the integration over tBedimensional momentum space. We choose
the infrared cutoff function with the structure:

R/\,uv(pz) - 5pvR/\(p2)- (3.15)
We adopt theproper-time form of the flow equationd:
arn= [ dr;STr[ (s *R“MRA] (3.16)
0

After performing the mode decomposition according to the projection me@@Hg, 17, the flow
eqguation reads

Al A :% /Ow dr Q 11r [e*T(WA'Qm?\luon) : atR?\'UO”] (transverse gluons
- ;/Owdr Q- 1Tr[e TWAZHR™ . 4RIV (scalar gluoi
+ % /Owdr Q1r [e‘T(‘“Xl@2+R9\|uon) - R3"*" (longitudinal gluon
- /: dr QTr [e‘T(‘Z’\@2+R?\h055 - R (ghosts), (3.17)

The spectrum sum is obtained from eigenvalues of the respective operatarovidr&ant Lapla-
cian — (Zp[V ])2 with the background field” which gives the (covariant constant) uniform chro-
momagnetic fieldd has the spectrum:

Specf—25[7]] = pf + (2n+1)gH, (n=0,1,---), (3.18)

wherep, denotes théD — 2) dimensional (Fourier) momentum in those space-time directions
which are not affected by the magnetic field (say, orthogonal+t®Iplane) and the index is a
discrete quantum number which labels the Landau levels. We take into account the fact that the
density of states i%ﬂ for theLandau levels

Moreover, the operatd.@ﬁ?, with the same background fietd has the spectrum:

p? +(2n+1)gH (D-2)
SpecfQ®] =4 p? +(2n+3)gH multiplicity 1 (n=0,1,--+), (3.19)
p? +(2n—1)gH 1

where the last term contains thielsen-Olesen unstable mod®rn=0, i.e.,

p7 —gH, (3.20)
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which becomes tachyonic modefor small momentapi < gH.

whereW, (0) = %WA(@). Here we have introduced teavefunction renormalization con-
stants Zy = 23", Zx = 29" In this derivation, we have adopted the truncation: neglecting the
four-point interactions among the off-diagonal gluons and off-diagonal ghagE3ecd3iCcacdab AC

AT
which do not couple to the background fi&/g.
The respective trace without the infrared regul&glis easily obtained:
Q’lTr[e*T(W/\Q)] _ NoA (TW/)L% 2(D —2)e” ™A9H 4 2~ STWAGH 4 DerWAgH
Tamr 1—e 2o /
e W g NgH o[ 2eTVadH
O 1Tre T W 2%)1 _ WL
e s MW [ o |
. —TZ\gH
Araet(—Za?y _ NgH o g p[ 27T
Q "Trle A ]_<4n)%(rz,\) 2 1 o2 |’ (3.22)

whereN = 2 for SU(2).
In order to obtain the closed analytical form for the solution and to compare the FRG calcu-
lations with the loop calculations, we choose the momentum-indepemdieared regular of the
mass type
RY = Z2A?, (3.22)

whereZ}‘\’ denotes thevave function normalization constant for the fieldb. Moreover, we show
later that the result is independent of the choice of the infrared regulator.
For the infrared regulator of the mass type, thus the flow equation reads

AA = g {(W/I\)lfg (2—NA)ZAN? /°° P Y Gl 2)e MAOH - g STWAGH - gWaoH
0

~(m? 1 & 2WH
— (W)Y 2 (2= na)ZAN2 /0 wdnl_ge_TZAAz%
® —10a, gH
- 0(/%71(2 - '7/\)2/\/\2/0 dTTlgeTZAAZJ__(aez/;or,\lg;r|
~ @Y E(2- ﬁA)ZA/\Z/omdrrl—'é’e—TzA’\zli_TZ;:gH}, (3.23)
where we have introduced tlamomalous dimensions
Na:=—6&INZy = ~Z\*%Zp, fipn = —&INZp = —Z 10 Zn. (3.24)

We find that the integral with respect toon the right-hand side of the flow equation is di-
vergent atD = 4 in thet = 0 region which is anltraviolet divergence. This divergence is in-
dependent of thénfrared divergence coming fromt = « region due to the factoe™A9" for
which the Nielsen-Olesen instability is responsible. This ultraviolet divergence is due to the fact
that the momentum-independent infrared cutoff function of the mass type does not suppress the
high-momenta. This aspect is a short-coming of the mass-type infrared regulator. However, the
result will be true for any other choice of the infrared regulator, since the infrared regBjdtpt)
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is constructed so that any infrared cutoff function approaches the same asymptotic form as the
mass-type one in the large Seel[[]] for more details.

The ultraviolet divergence is removed by the standard method. Thus we arrive at the flow
equation without the ultraviolet divergence:

N 2gH ( 2gH

AN V) {(W//\)l(z— NA)ZAN?

2 (4m2 \ " 4mu?
o0t 2NN e (034 2N Y (o Ly 2N
2 2WigH 2 2WigH T2 2WigH
1 ZAN? . 2( 1 M)
+an(2—na)ZAN?Z | 0, = + —2(2—AAN?C (0,2 + ——
A2 —nNA)Zn Z( > 2aAlgH> (2—NrNE 2" 2gH
N 2gH IN=1/n 2,10 (a1 Z\N? 10) (g 3 Z\N?
1 Zp\N? 1 ZAN?
(10 (g =4 2N — —4 A
¢ (O’ 2+2WA9H> % (0’2+2\NA9H>
1 ZaA? 1 A
_ 27(1,0) - A _ _PA 27(1,0) -0
+0A(2=NA)ZANT (o, 5+ ZaAlgH> 2(2=nnNC <0, 5+ 29H> }
(3.25)

Here we have introduced tlyeneralized Riemann{ -function or theHurwitz {-function {(z,A)
defined by

l 1
ZA) =y —— 3.26
{2d) =5 me (3.26)
which has its integral representation
Z(z)\)—l/mds§‘1 e’ (Rez>1,ReA > 0) (3.27)
T (2 o l1-es ’ ' '

Although the Hurwitz-function {(z A) is originally defined for Re > 1, ReA > 0, it can be
analytically continued to other region in the compieglane as an analytic function.

4. Absence of the Nielsen-Olesen instability
For large/\, we can take the approximation:
I)W/\(@) :@:>W/I\(@) =l 2Zy,=1=na EO,
i) ZA=1= fAr =0,
i) an = ap,, =const> 0. (4.2)
Then the flow equation can be cast into the total derivative fakima = ¢(...). We take into ac-

count the fact that the effective average acfigrat/\ = Ayy = » is given by the bare action for the
classical chromomagnetic field backgroutih_.. = & (#4,[#])? = 1H2. Then an approximate
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solution is obtained by integrating the flow equation from- Ayy = o to A Where\7/\(H) =0at
N\ = oo,
Thus, we arrive at the effective potential for larfyee.g., in the case afp = 1.

H 2 N2 —gH
VA(H) = sH24 = a2 [In9 1 ¢ HAZ|
AH) =51 5 [nu 4 } 1629 " A2 gH
1 2|11, oH N+ gH N2 —gH
= _¢H 2In 2In
+167T2 [3 g 2 T gH + gH

11 1 1 A2
—==C—4In2— = +87*0 (—1 +> (4.2)

3 3 "2 2gH

Note that{ (19 (—1,1) is real-valued fo > 0.
For the large\ satisfying/A? > gH, Va(H) is real-valued an¥, (H) has no imaginary part:

ImVa(H) = 0 for A2 > gH, (4.3)

&ImVA(H) = 0 for A% > gH. (4.4)

Therefore, the Nielsen-Olesen instability disappears for any valde iofparticular even at = 0
according to the above argument of the fixed point for the pure imaginary part of the flow equation.
For the small\ satisfyingA? < gH, however, the effective average potentia{H) obtained
above has the non-vanishing imaginary part:
/\2
IMVa(H) = 1(? 5 0?H? 9”2 n(—1)/i = —gH(gH A?) for A? < gH, (4.5)

which yields the nontrivial flow of the imaginary part:

AIMVa(H) = —%TQH/\Z <0 forA? < gH. (4.6)

This is not a contradiction, since the approximate solutioN/xH) obtained above is not con-
sidered to be valid in the small region; N2 < gH. In fact, the derivativediImVA(H) has the
discontinuity atA\? = gH. The effective potentials obtained above reproduce the Nielsen-Olesen
result by putting\ = 0.

5. gluon mass generation and vacuum condensations

The above approximate solutidd.®) eventually has the imaginary part and hence cannot be
used in the limitA — 0. As will be shown in this section, however, the approximate solution
obtained in the same type of approximations has the imnit 0 without developing the imaginary
part, if the effects of mass generation are incorporated into the analysis. Such mass generation is
expected to occur, as established in the numerical simulations on the ERiBE].

We introduce the mixed composite operators of gluons and ghostSUWKkay,

1 L
0= éAﬁA“a+ aiCC? (a=1,2). (5.1)
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and study the mass generation for the off-diagonal gluons (and ghosts), originating from the dimension-
two condensation?). Itis shown[LJ that the dimension-two condensatiofi) is BRST invariant
in the modified MA gaugdZ? defined by the GF+FP term, i.e., tlS gD, 2)-invariant form:
a—igs ( Lazpa . Licaca 5.2
GF+FP =! > u+§' ) (5.2)
whered andé are respectively the BRST and anti-BRST transformations.

According to B3, we introduce a new fielg which is an auxiliary field with no kinetic term
represented by the Lagrangian density:

1 1 1
Lp= 50+ GO)' G (p+G0O) = E(pTG’l(er 9o+ E@’TGﬁ, (5.3)

by inserting the unity: = [ Dge /9°*% in the path-integral measure. We observe:

o From the first term}p'G ¢, we observe thab represents the effective propagator of the
collective field g, i.e., two-gluon bound statepropagator.

e The second termp'¢ yields the cubic interactiongAA (and qu_C) for the operatord
quadratic in the off-diagonal gluons (and ghosts).

e The third term$ &G involving only the fundamental fields has the form of an exchange
of @ in the tree approximation.

By including.Z,, the two-point function:ﬁf\2> are modified as

) _ (2) 3 ab
(%) o —WAQE + 980, 0%, (1) s =N (PP) +ang 5%, (5.4)

where¢ = (@). Here we have adopted the truncation: neglecting the four-point interactions among
the off-diagonal gluons and off-diagonal ghosts.

We use the infrared regulator of the mass type and the same approximatids, i6x and
ap as those adopted in the previous case. Then we obtain the effective average péiértial)
describing the chromomagnetic condensation and dynamical mass generation simultaneously. We
consider the simplest case af, = 1 to clarify the qualitative feature (se&q] for a physical
meaning of the dimension-two condensate in this gauge). In this case, the effective potential is
given by

1

1 ~
= H% 4+~ ¢2+VA(H :

\7A(H,¢>=—41712H2(In;—0) [ (—1,§+2)|:> ¢ (—1,—1 ;,:)}
{

V/\(H7¢)

"2 2H

4712

X :=¢ + N2 (5.6)

10
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Here we have rescaldd asH — éH for later convenience so that the quantum p&jsdoes
not include they dependence. We find thelk (H, ¢) is obtained formVa(H) =V (H, ¢ = 0) by
shifting the variable\2 — A2 + ¢:

VA(H,9) =Va(H,¢ = 0)|p2_x =Va(H)|p2_x- (5.7)

The real-valuedness condition g is replaced byX —H > 0, or H < X := ¢ + A2 In other
words, the stability excludes the regiokt > X := ¢ + A2. Therefore, we define thallowed
region for stability :

Zn={(H,9);H <X:=¢+A°H>0,¢ >0}. (5.8)

which is a region below the straight like = X with the slope 1 and intercepf.

VA(H, ¢) can be made real-valued by taking sufficiently lafgeas in the case 0fa(H). In
the absence of, this argument for eliminating the imaginary part does not work in the sfall
region in which the inequalitid > A? is satisfied. This shortcoming is avoided by includingin
fact, the allowed region for stability?, becomes narrower for lower value &f but survives even
in the limit A — 0. Hence, théd axis or¢ = 0 is excluded in the limit\ — 0.

The running couplingjs is monotonically increasing in decreasifig Therefore, the tree term
%g,*\sz also becomes negligible for small enoufyh

We can write down the flow equation f@,. Solving it, we find thaiGj\1 monotonically
decreases a& decreases. Therefore, the effect of the tree t28R*¢2 becomes more and more
negligible for smallerA. In fact, the increasing o6, in decreasing\ is reasonable, since the
bound state propagat@,(s) will approach the structure with a pole-like dependences dor
small enough\ [24]. Therefore, the details of the behavior@f does not change the following
result qualitatively.

Thus the existence and location of the minimum can be dominantly determined by the quantum
partV(H, ). In view of these, we have looked for the minimum\af(H, ¢) in the regionZ,.

6. Conclusion and discussion

We have shown that the Nielsen-Olesen instability of the Savvidy vacuum with homogeneous
chromomagnetic condensation is avoided in the framework of the FRG. Actually, we have shown
that the imaginary part of the effective average action vanishes at sufficiently large infrared cutoff
A\, and this property can survive &t= 0. This behavior can be understood as a fixed point solution
of the flow equation for the complex-valued effective average action. Therefore, the Nielsen-Olesen
instability is an artifact of the loop calculation in the perturbation theory.

Moreover, we have discussed the physical mechanism for keeping the stability for stnaller
the stability is maintained even for sméllonce the mass generation occurs for the off-diagonal
gluons (and off-diagonal ghosts). SB&|[for the related works.

The comparison of our result for the effective potential with thafl@f fuggests that (iH # 0
and¢ # 0 is realized in the Yang-Mills vacuum. Using these soluti@§&I[)], moreover, we are
able to discuss the possible relationship between the stability and the scaling/decoupling solutions
which are recently claimed to be the true infrared solutions in the deep infrared region realizing
quark and gluon confinement. These issues will be further discussed in future works.

11
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