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1. Introduction

Thedual superconductor picture [1] for the Yang-Mills theory vacuum is an attractive hy-
pothesis for explaining quark confinement. The key ingredients of this picture are the existence of
chromomagnetic monopole condensationand thedual Meissner effect. For the dual supercon-
ductor picture for the Yang-Mills theory vacuum to be true, the chromomagnetic monopole con-
densation must give a more stable vacuum than the perturbative one. In view of this, Savvidy [2]
has argued based on the general analysis of the renormalization group equation that thedynamical
generation of chromomagnetic fieldshould occur in the Yang-Mills theory, i.e., a non-Abelian
gauge theory with asymptotic freedom. Indeed, Savvidy has shown that the vacuum with non-
vanishinghomogeneous chromomagnetic fieldstrength, i.e., the so-calledSavvidy vacuumhas
lower energy density than the perturbative vacuum with zero chromomagnetic field. The effective
potentialV(H) of the homogeneous chromomagnetic fieldH has the form inSU(2) Yang-Mills
theory:

VSavvidy(H) =
1
2

H2− β0g2

16π2

1
2

H2
(

ln
gH
µ2 +c

)
, β0 := −22

3
< 0. (1.1)

Then the effective potentialV(H) of the homogeneous chromomagnetic fieldH has an absolute
minimum atH = H0 6= 0 away fromH = 0. The chromomagnetic condensation gives more stable
vacuum than the perturbative one.

Immediately after his proposal, however, N.K.Nielsen and Olesen [3] have shown that the
effective potentialV(H) of the homogeneous chromomagnetic fieldH, when calculated explicitly
at one-loop level in the perturbation theory under the background gauge, develops a pure imaginary
part:

VNO(H) =
1
2

H2− β0g2

16π2

1
2

H2
(

ln
gH
µ2 +c

)
+ i

g2H2

8π
, (1.2)

in addition to the real part which agrees exactly with the Savvidy’s result. This is called theNielsen-
Olesen (NO) instability of the Savvidy vacuum. The presence of the pure imaginary part implies
that the Savvidy vacuum gets unstable due to gluon–antigluon pair annihilation.

This result is easily understood based on the following observation. In the homogeneous
external chromomagnetic fieldH, the energy eigenvalueEn of the massless (off-diagonal) gluons
with the spinS= 1 (Sz = ±1) is given by

E±
n =

√
p2
⊥ +2gH(n+1/2)+2gHSz (n = 0,1,2, · · ·), (1.3)

where p⊥ denotes the momentum in those space-time directions which are not affected by the
magnetic field and the indexn is a discrete quantum number which labels theLandau levels. Then
the NO instability is understood as originating from thetachyon modewith n = 0 andSz = −1
(or the lowest Landau level for the gluon with spin one antiparallel to the external chromomagnetic
field), since

E−
0 =

√
p2
⊥−gH, (1.4)

becomes pure imaginary whenp2
⊥ < gH. In other words, the NO instability of the Savvidy vacuum

with homogeneous chromomagnetic condensation is due to the existence of the tachyon mode
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corresponding to the lowest Landau level which is realized by the applied external homogeneous
chromomagnetic field.

A way to circumvent the NO instability is to introduce themagnetic domains(domain struc-
ture) with a finite extension into the vacuum [4]. The physical vacuum in Yang-Mills theory is split
into an infinite number of domains with macroscopic extensions. Inside each such domain there
is a nontrivial configuration of chromomagnetic field and the tachyon mode does not appear in the
domain supportingp2

⊥ > gH. This resolution for the NO instability of Yang-Mills theory is called
theCopenhagen vacuumor Spaghetti vacuum. It is instructive to recall that the vortices in a type
II superconductor are neatly arranged into a hexagonal or occasionally square lattice.

The Copenhagen vacuum is a well-done model of the Yang-Mills vacuum. The domain struc-
ture introduces an infrared cutoff which prevents the momenta from taking the smaller values caus-
ing the instability. However, it is quite complicated to work out the dynamics of the Yang-Mills
theory on the concrete inhomogeneous background. Therefore, there have been a lot of works
trying to overcome the NO instability for the homogeneous chromomagnetic field.

In view of these, we reexamine the NO instability in theSU(2) Yang-Mills theory in the
framework of thefunctional renormalization group (FRG) [5] as a realization of theWilsonian
renormalization group. The FRG enables us to examine the effects caused by changing the in-
frared cutoff in a systematic way. In this paper we follow the methods developed for FRG in
[6, 7, 8, 9, 10]. We point out the following results [11].

1. The Nielsen-Olesen instabilityin the effective potentialV(H) for the homogeneous chro-
momagnetic fieldH, i.e., the imaginary part ImV(H) of V(H) disappears (or is absent from
the beginning) in the framework of the FRG. (Therefore, the Nielsen-Olesen instability is
an artifact of the one-loop calculation in the perturbation theory and it disappears in the
non-perturbative framework beyond the perturbation theory.)

2. However, this result does not necessarily guarantee the automatic existence of the non-trivial
homogeneous chromomagnetic fieldH0 6= 0 as the minimum of the effective potentialV(H),
such thatV(H0) < V(H = 0) = 0. (Therefore, the absence of the Nielsen-Olesen instability
and the existence of the non-trivial minimum for the homogeneous chromomagnetic field in
the effective potential are different problems to be considered independently.)

3. As a physical mechanism for maintaining the stability even for the small infrared cutoff,
we propose thedynamical mass generationfor the off-diagonal gluons (and off-diagonal
ghosts), which is related to the BRST-invariantvacuum condensation of mass-dimension
two [12, 13, 14, 15]. This gives a consistent picture compatible with the absence of the
instability. (This leads to theAbelian dominance[16]: in the string tension extracted from
the Wilson loop average and exponential-falloff of the off-diagonal gluon propagators [17,
18, 19] as well as the magnetic monopole dominance in the Maximal Abelian gauge.)

2. Complex-valued flow equation in the FRG

The effective average actionΓΛ with the infrared cutoffΛ is obtained by solving the flow

3
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equation [5]:

∂tΓΛ =
1
2

STr
[
(Γ(2)

Λ +RΛ)−1 ·∂tRΛ
]
, ∂t := Λ

d
dΛ

, (2.1)

where STr denotes the “supertrace” introduced for writing both commuting fields (e.g., gluons )
and anticommuting fields (e.g., quarks and the Faddeev-Popov ghosts),RΦ

Λ is theinfrared cutoff
function for the fieldΦ which is introduced as theinfrared regulator term in the form:

∫
Φ†RΦ

ΛΦ,

andΓ(2)
Λ denotes the second functional derivatives ofΓΛ with respect to the field variablesΦ:

(Γ(2)
Λ )Φ†Φ =

−→
δ

δΦ† ΓΛ

←−
δ

δΦ
, (2.2)

corresponding to the inverse exact propagator at the scaleΛ. The ordinaryeffective actionΓ as the
generating functional of the one-particle irreducible vertex functions is obtained in the limitΛ ↓ 0:
Γ = limΛ↓0 ΓΛ.

We consider the complex-valued effective average actionΓΛ = ΓR
Λ + iΓI

Λ which is decomposed
into the real partΓR

Λ := ReΓΛ and the imaginary partΓI
Λ := ImΓΛ. Then it is shown (see Appendix

A of [11]) that the flow equation is decomposed into two parts:

∂tΓR
Λ =

1
2

STr
{[

(ΓR(2)
Λ +RΛ)2 +(ΓI(2)

Λ )2]−1(ΓR(2)
Λ +RΛ)∂tRΛ

}
, (2.3)

∂tΓI
Λ =− 1

2
STr

{[
(ΓR(2)

Λ +RΛ)2 +(ΓI(2)
Λ )2]−1ΓI(2)

Λ ∂tRΛ

}
. (2.4)

We find thatthe identically vanishing imaginary partΓI
Λ := ImΓΛ ≡ 0 is a solution corre-

sponding to afixed point:
ImΓΛ ≡ 0 for any value ofΛ, (2.5)

in sharp contrast with the real part. IfΓI
Λ 6= 0 for a certain value ofΛ, it does not maintain the

same value, i.e.,β (ΓI
Λ) 6= 0. Thus the problem of showing the absence of the imaginary part

ImΓ = limΛ↓0 ImΓΛ in the effective actionΓ = limΛ↓0 ΓΛ is reduced to proving the vanishing of the
imaginary part ImΓΛ in the effective average actionΓΛ for a sufficiently large value ofΛ:

ImΓΛ = 0 for a certain value ofΛ À 1. (2.6)

WhenΓI
Λ = 0, the flow equation forΓR

Λ turns into the standard flow equation.

3. Flow equation in the chromomagnetic background

We consider theD-dimensional Euclidean Yang-Mills theory. We decompose theSU(2) Yang-
Mills field Aµ = A A

µ TA into thebackground fieldVµ = V A
µ TA andthe quantum fluctuation field

Xµ = X A
µ TA whereTA = 1

2σA with σA being the Pauli matrices (A = 1,2,3):

A A
µ = V A

µ +X A
µ (A = 1,2,3). (3.1)

We can choose without loss of generality the diagonal fieldVµ as the background field:

V A
µ (x) = δ A3Vµ(x), (3.2)

4
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and the off-diagonal fieldAa
µ (a = 1,2) as the quantum fluctuation field:

X A
µ (x) = δ AaAa

µ(x) , (a = 1,2). (3.3)

In what follows, we prepare the diagonal fieldVµ(x) of the form:

Vµ(x) =
1
2

xνHνµ , (3.4)

so that thex-independenthomogeneous background field strengthis realized:

F A
µν [V ](x) :=∂µV A

ν (x)−∂νV A
µ (x)+ εABCV B

µ (x)V C
ν (x) = δ A3(

∂µVν(x)−∂νVµ(x)
)

= δ A3Hµν .

(3.5)

The total effective average actionΓΛ is specified by giving the gauge-invariant partΓinv
Λ , the

gauge-fixing (GF) partΓGF
Λ and the associated Faddeev-Popov (FP) ghost partΓFP

Λ :

ΓΛ = Γinv
Λ +ΓGF

Λ +ΓFP
Λ . (3.6)

We choose thebackground gaugeas the gauge fixing condition to maintain the gauge invari-
ance for the background field. In the above choice for the background field (3.2), the background
gauge reduces to themaximal Abelian (MA) gauge:

Fa := Dab
µ [V]Ab

µ = 0, Dab
µ [V] := ∂µδ ab−gεab3Vµ . (3.7)

Thenthe gauge-fixing termis given by

ΓGF =
∫

dDx
1

2α

(
Dab

µ [V]Ab
µ

)2
, (3.8)

whereα denotes the gauge-fixing parameter.
TheFP ghost term is determined according to the standard procedure (see e.g., [20]) as

ΓFP =
∫

dDx{iC̄aDab
µ [V]Dbc

µ [V]Cc−g2εab3εcd3iC̄aCdAb
µAc

µ + iC̄agεab3(Dbc
µ [V]Ac

µ)C3}. (3.9)

For the gauge-invariant partΓinv
Λ , we adopt the ansatz, a functionWΛ of the gauge-invariant

termΘ constructed from the field strengthF A
µν [A ] := ∂µA A

ν −∂νA A
µ + εABCA B

µ A C
ν :

Γinv
Λ =

∫
dDxWΛ (Θ(x)) , Θ :=

1
4

(
F A

µν [A ]
)2

. (3.10)

Θ is decomposed as [21]

Θ =
1
4

(
F A

µν [V ]
)2

+
1
2

Aµa
(

Qab
µν +Dac

µ [V]Dcb
ν [V]

)
Aνb +

1
4

(
ε3abAa

µAb
ν

)2
, (3.11)

Qab
µν :=−

(
D2)abδµν +2gεabHµν ,

(
D2)ab

:= Dac
ρ [V]Dcb

ρ [V]. (3.12)

In the vanishing off-diagonal field limitAa
µ → 0, Θ is reduced to

Θ|A=0 =
1
4

(
F A

µν [V ](x)
)2

=
1
4

(
∂µVν(x)−∂νVµ(x)

)2 =
1
2

H2, (3.13)
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whereH :=
√

HHH2 =
√

1
2Hαβ Hαβ > 0.

The off-diagonal gluon fieldsAa
µ (and off-diagonal ghost fieldsCa, C̄a) should be integrated

out in the framework of the FRG following the idea of the Wilsonian renormalization group. For
this purpose, we introduce theinfrared regulator term ∆SΛ for the off-diagonal gluonAa

µ and
off-diagonal ghostsCa, C̄a by

∆SΛ =
∫

p

[1
2

Aa
µ(p)RΛ,µν(p2)δ abAb

ν(p)+C̄a(p)RΛ(p2)δ abCb(−p)
]

(a,b = 1,2), (3.14)

where
∫

p :=
∫ dD p

(2π)D denotes the integration over theD-dimensional momentum space. We choose
the infrared cutoff function with the structure:

RΛ,µν(p2) = δµνRΛ(p2). (3.15)

We adopt theproper-time form of the flow equation [8]:

∂tΓΛ =
∫ ∞

0
dτ

1
2

STr

[
e
−τ

(
Γ(2)

Λ +RΛ

)
∂tRΛ

]
. (3.16)

After performing the mode decomposition according to the projection method [6, 7, 9, 10], the flow
equation reads

∂tΓΛ =
1
2

∫ ∞

0
dτ Ω−1Tr

[
e−τ(W′

ΛQ+Rgluon
Λ ) ·∂tR

gluon
Λ

]
(transverse gluons)

− 1
2

∫ ∞

0
dτ Ω−1Tr

[
e−τ(−W′

ΛD2+Rgluon
Λ ) ·∂tR

gluon
Λ

]
(scalar gluon)

+
1
2

∫ ∞

0
dτ Ω−1Tr

[
e−τ(−α−1

Λ D2+Rgluon
Λ ) ·∂tR

gluon
Λ

]
(longitudinal gluon)

−
∫ ∞

0
dτ Ω−1Tr

[
e−τ(−Z̃ΛD2+Rghost

Λ ) ·∂tR
ghost
Λ

]
(ghosts), (3.17)

The spectrum sum is obtained from eigenvalues of the respective operator. Thecovariant Lapla-
cian −

(
Dρ [V ]

)2
with the background fieldV which gives the (covariant constant) uniform chro-

momagnetic fieldH has the spectrum:

Spect
[
−D2

ρ [V ]
]
= p2

⊥ +(2n+1)gH, (n = 0,1, · · ·), (3.18)

where p⊥ denotes the(D− 2) dimensional (Fourier) momentum in those space-time directions
which are not affected by the magnetic field (say, orthogonal to 1−2 plane) and the indexn is a
discrete quantum number which labels the Landau levels. We take into account the fact that the
density of states isgH

2π for theLandau levels.
Moreover, the operatorQab

µν with the same background fieldV has the spectrum:

Spect
[
Qab

µν
]
=


p2
⊥ +(2n+1)gH

p2
⊥ +(2n+3)gH

p2
⊥ +(2n−1)gH

multiplicity
(D−2)

1
1

(n = 0,1, · · ·), (3.19)

where the last term contains theNielsen-Olesen unstable modefor n = 0, i.e.,

p2
⊥−gH, (3.20)
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which becomes atachyonic modefor small momentap2
⊥ < gH.

whereW′
Λ(Θ) = d

dΘWΛ(Θ). Here we have introduced thewavefunction renormalization con-
stants: ZΛ = Zgluon

Λ , Z̃Λ = Zghost
Λ . In this derivation, we have adopted the truncation: neglecting the

four-point interactions among the off-diagonal gluons and off-diagonal ghosts−g2εab3εcd3iC̄aCdAb
µAc

µ ,
which do not couple to the background fieldVµ .

The respective trace without the infrared regulatorRΛ is easily obtained:

Ω−1Tr[e−τ(W′
ΛQ)] =

NgH

(4π)
D
2

(τW′
Λ)1−D

2
2(D−2)e−τW′

ΛgH +2e−3τW′
ΛgH +2eτW′

ΛgH

1−e−2τW′
ΛgH

,

Ω−1Tr[e−τ(−W′
ΛD2)] =

NgH

(4π)
D
2

(τW′
Λ)1−D

2

[
2e−τW′

ΛgH

1−e−2τW′
ΛgH

]
,

Ω−1Tr[e−τ(−Z̃ΛD2)] =
NgH

(4π)
D
2

(τZ̃Λ)1−D
2

[
2e−τZ̃ΛgH

1−e−2τZ̃ΛgH

]
, (3.21)

whereN = 2 for SU(2).
In order to obtain the closed analytical form for the solution and to compare the FRG calcu-

lations with the loop calculations, we choose the momentum-independentinfrared regular of the
mass type:

RΦ
Λ = ZΦ

Λ Λ2, (3.22)

whereZΦ
Λ denotes thewave function normalization constant for the fieldΦ. Moreover, we show

later that the result is independent of the choice of the infrared regulator.
For the infrared regulator of the mass type, thus the flow equation reads

∂tΓΛ =
NgH

(4π)
D
2

{
(W′

Λ)1−D
2 (2−ηΛ)ZΛΛ2

∫ ∞

0
dττ1−D

2 e−τZΛΛ2 (D−2)e−τW′
ΛgH +e−3τW′

ΛgH +eτW′
ΛgH

1−e−2τW′
ΛgH

− (W′
Λ)1−D

2 (2−ηΛ)ZΛΛ2
∫ ∞

0
dττ1−D

2 e−τZΛΛ2 e−τW′
ΛgH

1−e−2τW′
ΛgH

+α
D
2 −1

Λ (2−ηΛ)ZΛΛ2
∫ ∞

0
dττ1−D

2 e−τZΛΛ2 e−τα−1
Λ gH

1−e−2τα−1
Λ gH

− (Z̃Λ)1−D
2 (2− η̃Λ)Z̃ΛΛ2

∫ ∞

0
dττ1−D

2 e−τZ̃ΛΛ2 2e−τZ̃ΛgH

1−e−2τZ̃ΛgH

}
, (3.23)

where we have introduced theanomalous dimensions:

ηΛ := −∂t lnZΛ = −Z−1
Λ ∂tZΛ, η̃Λ := −∂t ln Z̃Λ = −Z̃−1

Λ ∂t Z̃Λ. (3.24)

We find that the integral with respect toτ on the right-hand side of the flow equation is di-
vergent atD = 4 in theτ = 0 region which is anultraviolet divergence. This divergence is in-
dependent of theinfrared divergence coming fromτ = ∞ region due to the factoreτW′

ΛgH for
which the Nielsen-Olesen instability is responsible. This ultraviolet divergence is due to the fact
that the momentum-independent infrared cutoff function of the mass type does not suppress the
high-momenta. This aspect is a short-coming of the mass-type infrared regulator. However, the
result will be true for any other choice of the infrared regulator, since the infrared regulatorRΛ(p2)

7
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is constructed so that any infrared cutoff function approaches the same asymptotic form as the
mass-type one in the largeΛ. See [11] for more details.

The ultraviolet divergence is removed by the standard method. Thus we arrive at the flow
equation without the ultraviolet divergence:

∂tΓΛ =
N
2

2gH
(4π)2

(
− ln

2gH
4πµ2 − γ

){
(W′

Λ)−1(2−ηΛ)ZΛΛ2

×

[
ζ

(
0,

1
2

+
ZΛΛ2

2W′
ΛgH

)
+ζ

(
0,

3
2

+
ZΛΛ2

2W′
ΛgH

)
+ζ

(
0,−1

2
+

ZΛΛ2

2W′
ΛgH

)]

+αΛ(2−ηΛ)ZΛΛ2ζ

(
0,

1
2

+
ZΛΛ2

2α−1
Λ gH

)
−2(2− η̃Λ)Λ2ζ

(
0,

1
2

+
Λ2

2gH

)}

+
N
2

2gH
(4π)2

{
(W′

Λ)−1(2−ηΛ)ZΛΛ2

[
ζ (1,0)

(
0,

1
2

+
ZΛΛ2

2W′
ΛgH

)
+ζ (1,0)

(
0,

3
2

+
ZΛΛ2

2W′
ΛgH

)

+ζ (1,0)
(

0,−1
2

+
ZΛΛ2

2W′
ΛgH

)
−2ζ

(
0,

1
2

+
ZΛΛ2

2W′
ΛgH

)]

+αΛ(2−ηΛ)ZΛΛ2ζ (1,0)

(
0,

1
2

+
ZΛΛ2

2α−1
Λ gH

)
−2(2− η̃Λ)Λ2ζ (1,0)

(
0,

1
2

+
Λ2

2gH

)}
.

(3.25)

Here we have introduced thegeneralized Riemannζ -function or theHurwitz ζ -function ζ (z,λ )
defined by

ζ (z,λ ) :=
∞

∑
n=0

1
(n+λ )z, (3.26)

which has its integral representation

ζ (z,λ ) =
1

Γ(z)

∫ ∞

0
ds sz−1 e−λs

1−e−s (Rez> 1,Reλ > 0). (3.27)

Although the Hurwitzζ -function ζ (z,λ ) is originally defined for Rez> 1, Re λ > 0, it can be
analytically continued to other region in the complexz-plane as an analytic function.

4. Absence of the Nielsen-Olesen instability

For largeΛ, we can take the approximation:

i) WΛ(Θ) = Θ ⇒W′
Λ(Θ) ≡ 1⇐⇒ ZΛ ≡ 1⇒ ηΛ ≡ 0,

ii) Z̃Λ ≡ 1⇒ η̃Λ ≡ 0,

iii) αΛ ≡ αΛUV = const.≥ 0. (4.1)

Then the flow equation can be cast into the total derivative form:∂tΓΛ = ∂t(...). We take into ac-
count the fact that the effective average actionΓΛ atΛ = ΛUV = ∞ is given by the bare action for the
classical chromomagnetic field background:ΓΛ=∞ = 1

4

(
F A

µν [V ]
)2 = 1

2H2. Then an approximate

8
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solution is obtained by integrating the flow equation fromΛ = ΛUV = ∞ to Λ whereṼΛ(H) = 0 at
Λ = ∞.

Thus, we arrive at the effective potential for largeΛ, e.g., in the case ofαΛ ≡ 1:

VΛ(H) =
1
2

H2 +
1

16π2 Λ2
[
ln

gH
µ2 +

1
4
−C

]
− 2

16π2gHΛ2 ln
Λ2−gH
Λ2 +gH

+
1

16π2g2H2

[
11
3

ln
gH
µ2 +2ln

Λ2 +gH
gH

+2ln
Λ2−gH

gH

− 11
3

C−4ln2− 1
3

+8ζ (1,0)
(
−1,

1
2

+
Λ2

2gH

)]
. (4.2)

Note thatζ (1,0)(−1,λ ) is real-valued forλ > 0.
For the largeΛ satisfyingΛ2 ≥ gH, ṼΛ(H) is real-valued andVΛ(H) has no imaginary part:

ImVΛ(H) = 0 for Λ2 ≥ gH, (4.3)

∂t ImVΛ(H) = 0 for Λ2 ≥ gH. (4.4)

Therefore, the Nielsen-Olesen instability disappears for any value ofΛ, in particular even atΛ = 0
according to the above argument of the fixed point for the pure imaginary part of the flow equation.

For the smallΛ satisfyingΛ2 < gH, however, the effective average potentialVΛ(H) obtained
above has the non-vanishing imaginary part:

ImVΛ(H) =
4

16π2g2H2
Λ2

gH −1

2
ln(−1)/i =

1
8π

gH(gH−Λ2) for Λ2 < gH, (4.5)

which yields the nontrivial flow of the imaginary part:

∂t ImVΛ(H) = − 1
4π

gHΛ2 < 0 for Λ2 < gH. (4.6)

This is not a contradiction, since the approximate solution ofVΛ(H) obtained above is not con-
sidered to be valid in the smallΛ region; Λ2 < gH. In fact, the derivative∂t ImVΛ(H) has the
discontinuity atΛ2 = gH. The effective potentials obtained above reproduce the Nielsen-Olesen
result by puttingΛ = 0.

5. gluon mass generation and vacuum condensations

The above approximate solution (4.2) eventually has the imaginary part and hence cannot be
used in the limitΛ → 0. As will be shown in this section, however, the approximate solution
obtained in the same type of approximations has the limitΛ → 0 without developing the imaginary
part, if the effects of mass generation are incorporated into the analysis. Such mass generation is
expected to occur, as established in the numerical simulations on the lattice [17, 18].

We introduce the mixed composite operators of gluons and ghosts: ForSU(2),

O =
1
2

Aa
µAµa +α iC̄aCa (a = 1,2). (5.1)
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and study the mass generation for the off-diagonal gluons (and ghosts), originating from the dimension-
two condensation〈O〉. It is shown [13] that the dimension-two condensation〈O〉 is BRST invariant
in the modified MA gauge [22] defined by the GF+FP term, i.e., theOSp(D,2)-invariant form:

L MA
GF+FP =iδδδ δ̄δδ

(
1
2

Aa
µAa

µ +
α
2

iC̄aCa
)

, (5.2)

whereδδδ andδ̄δδ are respectively the BRST and anti-BRST transformations.

According to [23], we introduce a new fieldφ which is an auxiliary field with no kinetic term
represented by the Lagrangian density:

Lφ =
1
2

(φ +GO)†G−1(φ +GO) =
1
2

φ†G−1φ +φ†O +
1
2
O†GO, (5.3)

by inserting the unity: 1=
∫

Dφe−
∫

dDxLφ , in the path-integral measure. We observe:

• From the first term1
2φ†G−1φ , we observe thatG represents the effective propagator of the

collective fieldφ , i.e., two-gluon bound statepropagator.

• The second termφ†O yields the cubic interactionsφAA (and φC̄C) for the operatorO
quadratic in the off-diagonal gluons (and ghosts).

• The third term1
2O†GO involving only the fundamental fields has the form of an exchange

of φ in the tree approximation.

By includingLφ , the two-point functionsΓ(2)
Λ are modified as(

Γ(2)
Λ

)
Aa

µ Ab
ν
= W′

ΛQab
µν +ϕδµνδ ab,

(
Γ(2)

Λ

)
C̄aCb

= −Z̃Λ
(
D2)ab

+αΛϕδ ab, (5.4)

whereϕ = 〈φ〉. Here we have adopted the truncation: neglecting the four-point interactions among
the off-diagonal gluons and off-diagonal ghosts.

We use the infrared regulator of the mass type and the same approximations forWΛ, Z̃Λ and
αΛ as those adopted in the previous case. Then we obtain the effective average potentialVΛ(H,ϕ)
describing the chromomagnetic condensation and dynamical mass generation simultaneously. We
consider the simplest case ofαΛ ≡ 1 to clarify the qualitative feature (see [14] for a physical
meaning of the dimension-two condensate in this gauge). In this case, the effective potential is
given by

VΛ(H,ϕ) =
1

2g2
Λ

H2 +
1

2GΛ
ϕ2 +ṼΛ(H,ϕ), (5.5)

ṼΛ(H,ϕ) =− 1
4π2H2

(
ln

H
µ2 −C

)[
ζ

(
−1,

3
2

+
X

2H

)
+ζ

(
−1,−1

2
+

X
2H

)]
+

1
4π2H2

[
ζ (1,0)

(
−1,

3
2

+
X

2H

)
+ζ (1,0)

(
−1,−1

2
+

X
2H

)
−2ζ

(
−1,

1
2

+
X

2H

)]
,

X :=ϕ +Λ2. (5.6)
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Here we have rescaledH as H → 1
gH for later convenience so that the quantum partsṼΛ does

not include theg dependence. We find thatṼΛ(H,ϕ) is obtained formṼΛ(H) = ṼΛ(H,ϕ = 0) by
shifting the variableΛ2 → Λ2 +ϕ:

ṼΛ(H,ϕ) = ṼΛ(H,ϕ = 0)|Λ2→X = ṼΛ(H)|Λ2→X. (5.7)

The real-valuedness condition forVΛ is replaced byX −H > 0, or H < X := ϕ + Λ2. In other
words, the stability excludes the region:H ≥ X := ϕ + Λ2. Therefore, we define theallowed
region for stability :

RΛ =
{
(H,ϕ);H < X := ϕ +Λ2,H ≥ 0,ϕ > 0

}
. (5.8)

which is a region below the straight lineH = X with the slope 1 and interceptΛ2.
VΛ(H,ϕ) can be made real-valued by taking sufficiently largeΛ, as in the case ofVΛ(H). In

the absence ofϕ , this argument for eliminating the imaginary part does not work in the smallΛ
region in which the inequalityH > Λ2 is satisfied. This shortcoming is avoided by includingϕ. In
fact, the allowed region for stabilityRΛ becomes narrower for lower value ofΛ, but survives even
in the limit Λ → 0. Hence, theH axis orϕ = 0 is excluded in the limitΛ → 0.

The running couplinggΛ is monotonically increasing in decreasingΛ. Therefore, the tree term
1
2g−2

Λ H2 also becomes negligible for small enoughΛ.
We can write down the flow equation forGΛ. Solving it, we find thatG−1

Λ monotonically
decreases asΛ decreases. Therefore, the effect of the tree term1

2G−1
Λ ϕ2 becomes more and more

negligible for smallerΛ. In fact, the increasing ofGΛ in decreasingΛ is reasonable, since the
bound state propagatorGΛ(s) will approach the structure with a pole-like dependence ons for
small enoughΛ [24]. Therefore, the details of the behavior ofGΛ does not change the following
result qualitatively.

Thus the existence and location of the minimum can be dominantly determined by the quantum
partṼ(H,ϕ). In view of these, we have looked for the minimum ofṼΛ(H,ϕ) in the regionRΛ.

6. Conclusion and discussion

We have shown that the Nielsen-Olesen instability of the Savvidy vacuum with homogeneous
chromomagnetic condensation is avoided in the framework of the FRG. Actually, we have shown
that the imaginary part of the effective average action vanishes at sufficiently large infrared cutoff
Λ, and this property can survive atΛ = 0. This behavior can be understood as a fixed point solution
of the flow equation for the complex-valued effective average action. Therefore, the Nielsen-Olesen
instability is an artifact of the loop calculation in the perturbation theory.

Moreover, we have discussed the physical mechanism for keeping the stability for smallerΛ:
the stability is maintained even for smallΛ once the mass generation occurs for the off-diagonal
gluons (and off-diagonal ghosts). See [25] for the related works.

The comparison of our result for the effective potential with that of [10] suggests that (i)H 6= 0
andϕ 6= 0 is realized in the Yang-Mills vacuum. Using these solutions [9, 10], moreover, we are
able to discuss the possible relationship between the stability and the scaling/decoupling solutions
which are recently claimed to be the true infrared solutions in the deep infrared region realizing
quark and gluon confinement. These issues will be further discussed in future works.
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