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Dressed perturbation theory (DPT) is a perturbative appirbased on the idea of using dressed
propagators, instead of free propagators like in ordinanyysbation theory. Quark and gluon
self-energies are added to the free part of the QCD actiorsahttacted from the interaction
part. The added self-energies are determined self-centligvia a devised symmetry-preserving
power counting scheme. Correlation functions are therutatled using the modified QCD in-
teraction according to the devised power counting. At zeostler, DPT is very similar to the
rainbow-ladder truncation scheme for Dyson-Schwinger Betthe-Salpeter equations; the first
nontrivial perturbative contribution introduces vertexrrections. Dynamical chiral symmetry
breaking is realized in the light-quark sector; Goldsterteeorem and the axial-vector Ward-
Takahashi identity are satisfied in the chiral limit. Higbeder contributions can be calculated in
a systematic, symmetry-preserving and controllable viles,ih ordinary perturbation theory.
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1. Introduction and M otivation

Dyson-Schwinger equations (DSESs) provideaminitio framework to study in continuum
space-time strongly interacting phenomena governed byifQomaChromodynamics (QCD). They
form an infinite hierarchy of coupled integral equationsdorrelation functions of quark and gluon
fields. Bound states of quarks and gluons are identified aspolthe correlation functions; the
amplitudes describing projections onto Fock-space commsnof the constituents are described
by Bethe-Salperter equations (BSE). Because of the infiiérchy of the equations, truncation
schemes must be devised to obtain a tractable problem. Hefufveys contemporary studies
within such a framework, addressing progresses achieviidmweil known truncation schemes and
identifying instances where they fail. For an earlier reyisee Ref. [2].

In the present communication we present a novel truncatibarse for the hierarchy of DSEs
in QCD based on perturbation theory; we name it Dressed attan Theory (DPT). In ordinary
perturbation theory, correlation functions are calcwats a power series in the QCD coupling con-
stant, using noninterating quark and gluon propagatorBRM, one uses dressed quark and gluon
propagators that incorporate interactions via quark andrgkelf-energies. The self-energiesare
added to the original noninteracting part of the QCD Lagiamgwhile the perturbative expansion
is implemented with the original QCD interaction modifiedthg subtraction of the same quark
and gluon self-energies that were added to the nonintagagirt of the Lagrangian. The added
quark and gluon self-energies are determined self-camligtvia a devised symmetry-preserving
power counting scheme. At zeroth order, DPT is very simitathie rainbow-ladder truncation
scheme, in that quark and gluon self-energies are detedrsigléconsistently via a DSE with bare
quark-gluon vertices [1, 2]. The first perturbative condtibn in DPT introduces vertex correc-
tions, similar to those studied in Refs. [3, 4, 5, 6, 7, 8, 9,11]. Higher order corrections can be
calculated in systematic and controllable way, very muufilar to ordinary perturbation theory.

The general idea behind DPT is not new. It shares many sitiemwith the method of the
d-expansion, also known as optimised perturbation theagd wvith self-interacting scalar field
theories [12], relativistic nuclear mean-field theorie8][land dynamical phase transitions in the
context of Ginzburg-Landau-Langevin equations [14]. #oabthares similarities with screened
perturbation theory [15], that has been used in finite teatpee field theory. In these, the self-
energies added to the noninteracting part of the action abilacted from the original interacting
part are constant mass terms; in DPT they are momentum-deperan essential feature for the
construction of symmetry-preserving BSE kernels. As weashothe present communication,
this is a key feature of DPT, as it describes dynamical cliyaimetry breaking (RSB) in the
light-quark sector, in that the the pion is obtained as th&l€one boson in the chiral limit, and
the axial-vector Ward-Takahashi identity is preserved.

The long-term goals of DPT are applications in heavy-quatas of QCD, with special
interest in heavy-light systems, lik2 andB mesons. It is a known feature of the rainbow-ladder
scheme that fails to reproduce the experimental valueseotlbctroweak decay constantsDf
andB mesons, despite describing well their masses. The diswegzare of the order of 25%, as
discussed in the review presented in Ref. [16]. The authmesidated that a possible reason for
this failure could be that the rainbow-ladder truncatiomas reliable in the charm quark region.
The issue is of immense contemporary interest for ongoiagyx®n experiments and forthcoming
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experiments to be conducted at FAIR and JLab. In particthare is interest in low-energ9N
cross sections [17], and of exotic nuclear bound state3/df [18]. In such studies, there is
particular interest is the question of flavor symmetry biegin hadron couplings [19].

2. DPT for Dyson-Schwinger Equations

Let us start from the QCD actio’ = .%+ .7, where.%; is quadratic in the fields

So= [dxay RS x-) )+ [dxayA) (D) x- VA, (@1)

and.# contains the usual quark-gluon and three- and four-glutavantions:

7= [ [igtﬁ(x) V- ASTR(X) — g 205,42 (x)AD (X AS ) (2.2)
+ %gzfabcfadeAg(x)AﬁAf,(x)Aﬁ(x)} : (2.3)
where
S x=Y) = (Yudu+m) 3 (x~y), (2.4)
(Dal)zt\); (x—y) = &% [—511\/‘724‘ <1— %) aua\/} 3*(x—y), (2.5)

whereé is a covariant-gauge fixing parameter.

Ordinary perturbation theory for correlation functiorikelthe quark and gluon propagators, is
based on a power series expansion in the coupling corgtditte correlation functions calculated
in this way are expressed in terms of the zeroth-order pmpasS, andDg, whose inverses are
given in Egs. (2.4) and (2.5). The basic main idea of DPT iss® dressed propagators, instead
of the zeroth order ones, and the series expansion is mateawttodified interaction, not the
original .. Specifically, DPT consists in three main steps:

e Quark and gluon self-energies, quadratic in the quark amangfields, are added t&, and
subtracted from#;:

Fo— FLo=So+ W P)+ (A MwA), (2.6)
A= L1=A—WZYP)— (AT A, (2.7)

where(@ Z ) and (ATTA) are shorthand notations for double integrals involvingdbark
and gluon fields and self-energies that will be spelled oattshahead. This will not change
the original action, as”o+ .7 = %+ .7 = .7;
1The SU(N) generators afe® = A2/2, a= 1,---,N2 — 1, with normalization T(T2TP) = 520/2, and[T2, Tb] =
ifabere (Tayk(Tayki — c 5, £kl fikl = Cp8l, Ck = (N2 —1)/2N, Ca = N. Euclidean metric conventions are:
AB =3 ABi; {Viu W} = 28 Vi = Vi V6 = —VaeVala:

([ 0 —igt?3 (10
V123 = i gl23 0 , Ya= 0-1]"

whereo?, 02, 03 are the Pauli matrices. Einstein’s convention of summaticer repeated indices is used in the paper.
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e Correlation functions are calculated as a power serieg|in

e A criterion is defined to fix self-consistently the self-agies> andIT.

The first step leads to the following expressions.f6§ and.” :

Fo= [dxdyP0S x-y) wiy)+ = [adym0 (57 Py Ry, (28)

v
with
S x—y) = x—y) +I(x-), (2.9)
<51)va (x=y) = (Dg )5 (X=) + T (x—), (2.10)
and

i = 8 [ di g0y AT - 91, 00R 00A5

1
+ 7007 FACF AL () A AL (AT (x)

& [ ity {wwi(x—y)w(y)—3Aﬁ<x>ﬁi‘,%<x—y>AB<y> e

2 H

The parameted here is introduced for bookkeeping purposes in the impleatiem of the second
step of DPT: correlation functions and observables areutled as a power series éhand, at
the end of the calculation) is put equal to one. It is important to note that an expansiod i
is not equivalent to an expansion i as the added self-energi&sand Mo,y Will turn out to
be non analytic functions af. Also, é is not meant to be a “small expansion parameter”; as
said, it is introduced to control the expansion. It4§ that is meant to be “small", in the sense
that contributions to correlation functions and obserealialculated perturbatively with?, will
become smaller and smaller as the orded is increased.

The third step of DPT consists in defining a criterion for fixtie self energieXo andlMgyy .
One possible criterion is the following. Quark and gluorf-selergies calculated perturbatively
with .7, will be given as a power series i

T =3T40%°5,4 0%+, (2.12)
My :ﬁuv+52n2uv+54n4uv+"‘> (2.13)

where the zeroth order self energiesnd,, are those introduced in Egs. (2.6) and (2.7). Note
that from thed dependence of”|, there are no odd powers dfcontributing to the quark and gluon
self energies. As in ordinary perturbation theory, caliofes are most easily done in momentum
space. The zeroth order propagators in momentum space ofE_jiven in terms of the Fourier
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transforms=(p) andM,, (p) of respectivelyz (x —y) and,, (x—y) by:

_ 1
S(p) = y prImis(n)’ (2.14)

= B _ Pubv PuPv

PP = (a5 >p2[1+ﬁ<p2>1+5 o (2.19)

wherefT is defined vidTyy, (p?) = (3uv P? — pupv)T(p?). TheZ andM,,, can be fixed by imposing
that the first non trivial contributions ®(p) andl, in Egs. (2.12) and (2.13) vanish, that is:

The second order contributios(p) and,,, are depicted in Fig. 1.

o £ e
O

+ — 00@00

Figure 1. Diagrammatic representation & (upper graphs) antl,,,(p) (lower graphs). The solid and
curly lines represent the dressed propagaa@sdD, respectively.

The imposed conditionE, = 0 andll,,, = 0 lead to the following self-consistent coupled
integral equations fa¥q(p) andMoy(p) (for two flavors):

4
2(p) = ggz / (gn?ﬁuv(p—q) VuS(A) v (2.17)
- g / o [14S(P+ Q)% S(@)] + CONSTag (2.18)

+5 g/ G Nupo (P, —P—0,0) Do’ (a) Dpp (P+a) Norprv (0, —(P+0), p), (2.19)

where Tp means trace over Dirac spinor indices, CONgTs a constant from the four-gluon
tadpole andN,,, is the bare three-gluon vertex (all gluon momenta entefiegvertex),

Nuvp(K, p,q) = —i(K—p)pSuv —i(P—a)udvp — i(q—K)vSyp. (2.20)
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Fig. 2 is a graphical representation these two equationsy &ke self-consistent because the un-
knownsZ, andlMo,y are contained in the zeroth-order propaga®asdD,,, in the integrals.

@ £

e

Figure 2: Diagrammatic representation of the dressed rainbow ardbrarphase approximations for the
quark (upper graphs) and the gluon self-energies (lowgrttza

Eq. (2.17) - depicted by the upper graph in Fig. 2 - isdhessed rainbow approximatidior
the quark propagator; the difference from the usual rainBpproximation is thaﬁg)a is not the
bare gluon propagator. Similarly, Eq. (2.19) - lower graptFig. 2 - gives thedressed random
phase approximatiofor the gluon propagator; a generalized random phase aippatinn, in that
qguark and gluon bubbles are summed with self-consistessddequark and gluon propagators.

Egs. (2.17) and (2.19) provide a starting point for DPT, a&szbroth order has been defined
and higher order contributions can be calculated systeaitiike in ordinary perturbation theory.
The next order of contribution to the quark and gluon selfrgies arec(d%). At this order, the
(internal) quark and gluon lines in Fig. 2 get dressed witkeitions of thet’(5?) self-energies
>, andl,,y, and new graphs representing dressing of the quark-gludrnhaee- and four-gluon
gluon vertices appear. Because of lack of space, from nowewill concentrate on the quark
propagator.

The ¢(8*) contributions to the quark self-energy are are depictedgnd: When imposing
Egs. (2.17) and (2.19) on the insertédd?) self-energies, the two first graphs vanish and only
the quark-gluon vertex corrections (two last graphs) doute to>,. The same feature happens
with the &(6%) contributions to the gluon self-energy, tf#&52) on internal quark and gluon lines
vanish and only vertex corrections contribute. One of theimilar to the (Abelian) one-photon
vertex correction in QED, which we dendi4, and the other contribution is a three-gluon vertex
(non-Abelian), which we denotE}*; they are given by

2 4 4
4(0) = "oz o [ e | oyt O (p 0 S0y S+ ) W 8P+ DD v (2:21)

2m4 ) (2m)4
and
A N2—-1 , r d% a4l _
Z0) = i34 | i [ s Dwv(P— O YaS(@Nupo (P11 = p)
X Yo' Dop(@—1)S(1) Yo Dora (I — ). (2.22)
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Here we have written explicitly the dependence on the nurobeplorsN;; as can be seen, the
Abelian contribution is INZ suppressed with respect to the non-Abelian contributiorsindple
application of DPT to a contact gluon propagator has beererita®ef. [20]. The dominance of
the non-Abelian vertex over over the Abelian correction loamicely seen.

@
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Figure 3: Diagrammatic representation of tif&(6%) to the quark self-energy. The solid and curly lines
represent the dressed propaga®andD, respectively.

From the exact DSE for the quark self-energy

4
Z(p) = / %QZDW(D—Q) VTS5 (a, p), (2.23)

and Egs. (2.21) and (2.22), one deducegt&*) Abelian3* and non-Abeliari 3" contributions
to the full quark-gluon vertex :

Mo =y TR+ T, (2.24)

with

a4 _ _ _

raf(, p) = —g?T°TeTP / 2y o S+ YaS(P+ Do (1) Yo (2.25)

and

ra"(q, p) = —g? f22°ToT® Ay —9,9—1,1 = p) Yo Dorp(q—1)S(1) yp Do (I —

no(dp)=—9 2 upa(P—0,9—1,1 = P) Yo' Dgrp(d—1) 1) o Do (I = P),
(2.26)

where we made use @PTaTP = —T2/2N, and fa8°°TPT¢ = iTaN./2. Here, one recognizes the
(dressed) one-loop correction to the quark-gluon vertex.

Corrections¢’(6%) to the gluon propagator are also vertex corrections. Inraaenaintain
local gauge symmetry, explicit ghost fields must be considlelhe same perturbation procedure
can be implemented for ghosts; imposing th5?) contributions vanish, like in Eq. (2.16) for
the quark and gluon self-energies, the zeroth-order gtedsesergies become determined: they
satisfy a self-consistent Dyson-Schwinger equation wattelvertices.

Like with other truncation schemes in QCD, an importantasthat must be observed is the
preservation of Ward identities related to global symnestriAmongst all, the axial-vector Ward-
Takahashi identity plays prominent role in connection wiith approximate chiral symmetry of
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QCD in the light quark sector, and the identification of therpas the associated pseudo Nambu-
Goldstone boson as solution of the homogeneous Bethet8alipethe isovector pseudoscalar
channel. In the hypothetical chiral limit, the pion would l&ssless - which is the content of
Goldstone’s theorem. This the subject of the next section.

3. Bether-Salpeter equations, Goldstone Theorem and Ward-Takahashi identities

Meson bound states can be obtained from the homogeneous-Belpeter equation (BSE)

4
Tm(dP)]ag = /% [Km (0, K P)|acos [S(ke) Fm(p, ki P) S(K-)lep (3.1)
whereKwm (g, k; P) is the fully amputated quark-antiquark scattering kerAeB, - - - denote collec-
tively color, flavor, and spinor indices; ahd = k+ n.P, with n,. +n_ = 1. HereKk s relative
momentum, andP is total momentum; ik; andk, are the momenta of particles 1 and 2, then
ki = k+n.P, andk, = k—n_P. The mass of the meson is the eigenvaRfe= —M?. Let us
consider the Bethe-Salpeter amplitude in the pion chafimgk= T'T'!, wheret', i = 1,2,3, are
the Pauli isospin matrices. The general structure (w.i@rityy charge conjugation, and Lorentz
transformations) of ; is:

M= VS(iEn‘F y-PFr+y-ky -PGr+ auvquPy Hn), (3.2)

whereEy, Ry, -- are scalar functions af andP. In the chiral limit,m= 0 in Eq. (2.4), XSB
demands that Eq. (3.1) has a solution v#th= 0 in the pseudoscalar channel.

Closely related to the pion bound state amplitiééqg; P), is the pseudovector vertex function
r3,(a; P), which satisfies the inhomogeneous BSE (omitting a renczatén Z, factor multiply-
ing the inhomogeneous term):

T(@P)] = (VW] so / 7 [Kn(0.k P)]ac ps [ Sk ) Thy (GP)SC)| . (3.3)

The Ward-Takahashi identity for in the chiral linmit= 0, reflecting the conservation of the axial-
vector current in QCD, is :

PurE, (0 P) = S (ay)iysT +iyT'S *(a.). (3.4)

Using hereS1(p) =iy- p+Z(p), with Z(p) given by the exact expression in Eq. (2.23), one can
rewrite the identity as

4
/ %{gzoumrk) VTS5 (k.64 )16] ag + 6Dy (A = K) [0 TS (K, 0-)] o}

d4k
= / K(9,k;P)]acps [S(ki)¥s + ¥5S(K-)lcp (3.5)

This shows that there is a dynamical relation imposed byatkymmetry between the quark self-
energy.



Dressed perturbation theory Gastéo Krein

The issue we address next is whether Goldstone’s theorethaWdard-Takahashi identity are
obeyed order by order in DPT. When tleactDSE has a honzero solution for the scalar part of the
quark self-energy, then trexactBSE has a massless solution in the quark-antiquark psealdosc
channel - the Nambu-Goldstone boson. A priori, since DPVides an approximate treatment for
the DSE, it is not obvious that a Nambu-Golsdstone bosorbeitibtained from the corresponding
approximate DSE. The question can be paraphrased as folfiives the Dyson-Schwinger equa-
tion for the quark self-energy at zeroth order, what is theesponding quark-antiquark scattering
kernel that produces a Nambu-Gol dstone boson? The answes iuestion is similar to the one
provided in Ref. [3] in the context of an improved rainbowddar approximation: given a DSE for
the quark self-energy, the kernel of the corresponding Bfaton is obtained via the replacement

Vi S(K) Yo — yu Sk )T (K P) S(K-) v (3.6)

That is, one cuts the internal dressed quark line in the gselfkenergy graph to introduce the
meson total momenturA. Let us examine this scheme in DPT at zeroth order.
We define, as usual

S(p) =iy-p+m+Z(p) =iy- pA(p?) +B(p), (3.7)

whereA(p?) andB(p?) are Lorentz scalar functions. In the chiral limih & 0), DxSB is charac-
terised by a nonzero solution of the integral equation fergbalar part of the quark self-energy,
i.e. B(p?) # 0. At zeroth order, Eq. (2.17), the integral equationBop?) is
B(o?)
=2 52, o "
?A"(0?) +B ()
At this level of approximation, the scheme of Ref. [3] leanl$he following kernel for the BSE

16 d*g _
B(p?) = 392 ﬁDuu(p—Q)

(3.8)

[Km(a,k; P)]AC,DB =—¢ (VIlTa)AC Duv(@—K) (WT%)pg- (3.9)

Clearly, this amounts to cutting the internal dressed qliagkin the quark self-energy graph in
Fig. 2 - top graph. Replacing this kernel into Eq. (3.1) antdipg P = 0 in Eq. (3.2), which gives
M 2(q;0) = iy En(g?), one can easily show that:

16 d*k — En(k?)
Ex(d?) = —gz/—D q—k) ——— L . (3.10)
@) =39 | Gy Ol )kZAZ(k2)+BZ(k2)
Comparing with Eq. (3.8), one concludes:
En(f) ~ B(cF). (3.11)

Therefore, if ato’(6°) the DSE gived3(g?) # 0, there is a massless pseudoscalar quark-antiquark
bound state in the spectrum.

Let us now examine the Ward-Takashi identity at his zerodeorUsing in Eq. (3.5) the’(5°)
quark propagator, BSE kernel and quark-gluon veftgfq, p) = y, T#, one obtains

gl
/ ((Zjn|;4 {oPDpv(ay —K) [YuTESK) W T2 ap + 9PDpuv (A —K) [y T2S(K) v T2 5}
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4
:_/(d §4g (VuT%) ac D (@=K) (W T%)pg [S(ki)ys +16S(k-)] ¢

4
_/ L 49 v(@=K) { TS W T2 g+ Y TS )W T2 e} - (3.12)

Trivial changes of variables establish the identity.

Given that we have a stating point that preserves Goldsdhebrem and satisfies the axial-
vector Ward-Takahashi identity, let us examine the apfitineof the cutting scheme of Ref. [3] to
the next order in DPT. Application of the scheme to t@*) quark self-energy amounts to cut
sequentially the dressed internal quark lines in the twaelogvaphs of Fig. 3. This process leads
to the following &' (5%) quark-antiquark scattering kernel:

Ka(q,k; P) = K2(q,k; P) + K§4(q, k; P), (3.13)

whereKj\(q,k; P) andK}”(q,k; P) correspond respectively to the Abeliaf}(q) and non-Abelian
Z7A(q) contributions to the quark self-energy; they can be written

[Kf(% k; P)]AC,DB - gzﬁw(q—k) {[VUTa]AC [reA(kﬂq*)]DB*' [F‘EA(M’%)]AC [y"Ta]DB}

a4l —
0" | e P ()Bse(a—p1) [WuTSik )T [wT*S@ +1)yT? (319
where in the last equation we used the explicit expressioA&d(k, q) given in Eq. (2.25), and

(K340 P)] acpg = 9D (@ —K) {[vuTa]AC [FEM(k, )] pg + (MM, a0)] pe (W T %0

(3. 15)
Replacing these into Eq. (3.5) and usifig(k,q) = MA(k,q) + r2Ak,q), after anticommuting
¥ with severaly matrices and trivial changes of variables, the Ward-Taglahalentity can be
established at this order as well.

In principle, there are dressed quark lines running in tressd gluon propagat@,, and
cutting them gives rise to annihilation processes whictirdmrte to isoscalar channels. These are
particularly crucial ingredients in studies where the Adrelian axial anomaly plays dominant
role, like in then — n’ mass splitting [3, 21]. For flavor non-diagonal meson statesonsider
here, these annihilation processes do not contribute.

The same scheme just described can be applied to other Veiedidshi identies, e.g. those
arising from global U(1) symmetries. A particular importarample is conservation of the electro-
magnetic current. The corresponding Ward-Takahashiiige@ntposes constraints to the electron-
photon vertex function, which is a ingredient in the caltiola of hadron form factors and quark
distribution functions.

Note that the expressions for the kerneltd*) in Egs. (3.14) and (3.15) are precisely
those one would obtain using Feynman rules derived f566mEq. (2.11). The “extraneous” term
o2 = , which is subtracted from the original QCD Lagrangian, doeescontribute to the ker-
nel: its iteration,0* (P Z ¢) (P Z ¢), certainly contributes t&4 but, in view of Eq. (2.16), this
contribution is cancelled by a same-order term which coma the mixing of2 W X (¢ with the
dressed one-gluon exchangé, (T Z ) (Py- ACTay) (Py- AT y).

10
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Contributions of higher orders id for the DSEs of quark and gluon self-energies and BSE
kernels can be obtained using Feynman rules derived ff@mThey consist of multiple quark and
gluon loops, in which cancellations of the terfig ¢y andAT A, of the kind described above, will
happen at each order. However, one does not need to worry siucancellation to construct the
BSE kernels if one uses the cutting scheme of Ref. [3], whaohle implemented in a automated
and analytical way. As explained in Ref. [5], one can use #egal relation between the BSE
kernel and the quark self-energy:

. 5ZAB(X7 y)
O&p(X,Y)’

whereZ(x,y) is obtained from an effective action in the presence of ahllsource fo(x)(y)

so that translational invariance is recovered only afterawing the source [22]. The reason for
stating the expression in coordinate space is to make diedrone has the correct number of
independent space-time coordinates to produce, underefatansformation, &y (q,k;P) with
the correct total momentui dependence.

[Kwm (x’,)/;x,y)}AqDB = (3.16)

4. Conclusions and Per spectives

In this communication we have introduced DPT: a perturleagipproach based on the idea of
using dressed propagators, instead of free propagaterinligrdinary perturbation theory. As we
have shown, at lowest ordé‘(éo), DPT is very similar to the rainbow-ladder truncation sckem
at 6’(54), the next contributing order, vertex corrections are iticed. Higher order corrections
can be calculated in systematic and controllable way, varghmsimilar to ordinary perturbation
theory. We have shown explicitly that Ward-Takahashi itefig obeyed at’(d%), and Golstone’s
theorem is respected.

We have not discussed local gauge invariance. This regthiiesmtroduction of ghost fields.
However, from the discussions presented, it should be thedrDPT is applicable to the DSEs
involving ghost fields. Imposing that(52) contributions vanish, like in Eq. (2.16) for the quark
and gluon self-energies, the zeroth-order ghost selfggg®become determined: they satisfy a
self-consistent Dyson-Schwinger equation with bare westi But now, Slavnov-Taylor identities
must be considered, which replace the Ward-Takahashiitigsnof local symmetries; they are
much more complicated as they involve also aghast propegyatot only quark and gluon prop-
agators. In this respect, the Pinch Technique (or the badkgr field method) can be of great
help, as the only Ward-Takahashi appear [23]. Also, we hateonsidered renormalization is-
sues, because of lack of space. Ugtad?), one can show explicitly that DPT is multiplicatively
renormalizable [24].

Acknowledgments:

I would like to thank my students Marco Brito and Fernandon&efior their work in the
development of DPT. Work partially financed by Fundacao deparo a Pesquisa do Estado de
Sao Paulo - FAPESP, Grant Nos. 2009/50180-0 and 2013/00.9@id Conselho Nacional de
Desenvolvimento Cientifico e Tecnoldgico - CNPq, Grant Neb894/2009-9 .

11



Dressed perturbation theory Gastéo Krein

References
[1] A. Bashir, L. Chang, I. C. Cloét, B. El-Bennich, Y.-X. Li€. D. Roberts and P. C. Tandy, Commun.
Theor. Phys58, 79 (2012).
[2] R. Alkofer and L. von Smekal, Phys. Repb3, 281 (2001).
[3] A.Bender, C. D. Roberts and L. Von Smekal, Phys. Let88B, 7 (1996).
[4] A.l. Davydychev, P. Osland and L. Saks, Phys. Re63)014022 (2001).
[5] P. Watson, W. Cassing and P. C. Tandy, Few Body S#t129 (2004).

[6] M. S. Bhagwat, A. Holl, A. Krassnigg, C. D. Roberts and PTandy, Phys. Rev. €0, 035205
(2004).

[7]1 H. H. Matevosyan, A. W. Thomas and P. C. Tandy, Phys. Refb,045201 (2007).
[8] R. Alkofer, C. S. Fischer, F. J. Llanes-Estrada and K.\v@afzer, Ann. Phys324, 106 (2009)
[9] C. S. Fischer and R. Williams, Phys. Rev. Ldi®3, 122001 (2009).

[10] A.C. Aguilar and J. Papavassiliou, Phys. Re\8%)014013 (2011).

[11] A.Bashir, A. Raya and S. Sanchez-Madrigal, Phys. Re84M36013 (2011).

[12] A. Okopinska, Phys. Rev. B5, 1835 (1987); M. Moshe and A. Duncan, Phys. Let215, 352
(1988); C. M. Bender and A. Rehban, Phys. ReviID3269 (1990); C. M. Bender and K. A. Milton,
Phys. Rev. 88, 1310 (1990); S. K. Gandhi and M. B. Pinto, Phys. Revl9)4528 (1994); S. Chiku
and T. Hatsuda, Phys. Rev.38, 076001 (1998), E. Braaten and E. Radescu, Phys. Rev.89%tt.
271602 (2002); J. -L. Kneur, M. B. Pinto and R. O. Ramos, PRgs. A68, 043615 (2003);

R. L. S. Farias, G. Krein and R. O. Ramos, Phys. Rey8[065046 (2008).

[13] G. Krein, D. P. Menezes and M. B. Pinto, Phys. Let8®), 5 (1996); G. Krein, R. S. M. de Carvalho,
D. P. Menezes, M. Nielsen and M. B. Pinto, Eur. Phys. 1, A5 (1998).

[14] N. C. Cassol-Seewald, R. L. S. Farias, G. Krein, R. S.dq¥as de Carvalho, Int. J. Mod. Phys2G
1240016 (2012).

[15] F. Karsch, A. Patkés and P. Petreczky, Phys. Le#tOB 69 (1997); J. O. Andersen, E. Braaten and
M. Strickland, Phys. Rev. B3, 105008 (2001).

[16] P. Maris and P. C. Tandy, Nucl. Phys. B (Proc. Supi8l, 136 (2006).

[17] J. Haidenbauer, G. Krein, U. G. Meissner and A. Sibirtgair. Phys. J. /83, 107 (2007); Eur. Phys.
J. A37,55 (2008); J. Haidenbauer, G. Krein, U.-G. Meissner andolog, Eur. Phys. J 47, 18
(2011).

[18] G. Krein, A. W. Thomas and K. Tsushima, Phys. Let6®, 136 (2011); K. Tsushima, D. H. Lu,
G. Krein and A. W. Thomas, Phys. Rev.83, 065208 (2011)

[19] B. El-Bennich, G. Krein, L. Chang, C. D. Roberts and D\ilson, Phys. Rev. 35, 031502 (2012).

[20] F. Sernapressed Perturbation Theory for the Quark PropagatdrSc Dissertation, IFT-UNESP,
May 2013.

[21] M. S. Bhagwat, L. Chang, Y.-X. Liu, C. D. Roberts, and PT@ndy, Phys. Rev. €6, 045203 (2007).
[22] H. J. Munczek, Phys. Rev. B2, 4736 (1995).

[23] J. M. Cornwall, J. Papavassiliou and D. Bindeie Pich Technique and its Applications to
Non-Abelian Gauge Theoriéd€ambridge, 2011).

[24] M. A. Brito, G. Krein and F. Serna, in preparation.

12



