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1. Introduction and Motivation

Dyson-Schwinger equations (DSEs) provide anab initio framework to study in continuum
space-time strongly interacting phenomena governed by Quantum Chromodynamics (QCD). They
form an infinite hierarchy of coupled integral equations forcorrelation functions of quark and gluon
fields. Bound states of quarks and gluons are identified as poles in the correlation functions; the
amplitudes describing projections onto Fock-space components of the constituents are described
by Bethe-Salperter equations (BSE). Because of the infinitehierarchy of the equations, truncation
schemes must be devised to obtain a tractable problem. Ref. [1] surveys contemporary studies
within such a framework, addressing progresses achieved with well known truncation schemes and
identifying instances where they fail. For an earlier review, see Ref. [2].

In the present communication we present a novel truncation scheme for the hierarchy of DSEs
in QCD based on perturbation theory; we name it Dressed Perturbation Theory (DPT). In ordinary
perturbation theory, correlation functions are calculated as a power series in the QCD coupling con-
stant, using noninterating quark and gluon propagators. InDPT, one uses dressed quark and gluon
propagators that incorporate interactions via quark and gluon self-energies. The self-energiesare
added to the original noninteracting part of the QCD Lagrangian, while the perturbative expansion
is implemented with the original QCD interaction modified bythe subtraction of the same quark
and gluon self-energies that were added to the noninteracting part of the Lagrangian. The added
quark and gluon self-energies are determined self-consistently via a devised symmetry-preserving
power counting scheme. At zeroth order, DPT is very similar to the rainbow-ladder truncation
scheme, in that quark and gluon self-energies are determined self-consistently via a DSE with bare
quark-gluon vertices [1, 2]. The first perturbative contribution in DPT introduces vertex correc-
tions, similar to those studied in Refs. [3, 4, 5, 6, 7, 8, 9, 10, 11]. Higher order corrections can be
calculated in systematic and controllable way, very much similar to ordinary perturbation theory.

The general idea behind DPT is not new. It shares many similarities with the method of the
δ -expansion, also known as optimised perturbation theory, used with self-interacting scalar field
theories [12], relativistic nuclear mean-field theories [13], and dynamical phase transitions in the
context of Ginzburg-Landau-Langevin equations [14]. It also shares similarities with screened
perturbation theory [15], that has been used in finite temperature field theory. In these, the self-
energies added to the noninteracting part of the action and subtracted from the original interacting
part are constant mass terms; in DPT they are momentum-dependent, an essential feature for the
construction of symmetry-preserving BSE kernels. As we show in the present communication,
this is a key feature of DPT, as it describes dynamical chiralsymmetry breaking (DχSB) in the
light-quark sector, in that the the pion is obtained as the Goldstone boson in the chiral limit, and
the axial-vector Ward-Takahashi identity is preserved.

The long-term goals of DPT are applications in heavy-quark sector of QCD, with special
interest in heavy-light systems, likeD andB mesons. It is a known feature of the rainbow-ladder
scheme that fails to reproduce the experimental values of the electroweak decay constants ofD
andB mesons, despite describing well their masses. The discrepancies are of the order of 25%, as
discussed in the review presented in Ref. [16]. The authors speculated that a possible reason for
this failure could be that the rainbow-ladder truncation isnot reliable in the charm quark region.
The issue is of immense contemporary interest for ongoing heavy-ion experiments and forthcoming
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experiments to be conducted at FAIR and JLab. In particular,there is interest in low-energyDN
cross sections [17], and of exotic nuclear bound states ofJ/Ψ [18]. In such studies, there is
particular interest is the question of flavor symmetry breaking in hadron couplings [19].

2. DPT for Dyson-Schwinger Equations

Let us start from the QCD actionS = S0+SI , whereS0 is quadratic in the fields

S0 =

∫

d4x d4y ψ(x)S−1
0 (x−y)ψ(y)+

1
2

∫

d4xd4yAa
µ(x)

(

D−1
0

)ab
µν (x−y)Ab

ν(y), (2.1)

andSI contains the usual quark-gluon and three- and four-gluon interactions1:

SI =
∫

d4x

[

igψ(x)γ ·AaTaψ(x)−g fabc∂µAa
ν(x)A

b
µ(x)A

c
ν(x) (2.2)

+
1
4

g2 f abcf adeAb
µ(x)A

c
νAd

µ(x)A
e
ν(x)

]

, (2.3)

where

S−1
0 (x−y) =

(

γµ∂µ +m
)

δ (4)(x−y), (2.4)

(

D−1
0

)ab
µν (x−y) = δ ab

[

−δµν∂ 2+

(

1−
1
ξ

)

∂µ∂ν

]

δ 4(x−y) , (2.5)

whereξ is a covariant-gauge fixing parameter.
Ordinary perturbation theory for correlation functions, like the quark and gluon propagators, is

based on a power series expansion in the coupling constantg. The correlation functions calculated
in this way are expressed in terms of the zeroth-order propagatorsS0 andD0, whose inverses are
given in Eqs. (2.4) and (2.5). The basic main idea of DPT is to use dressed propagators, instead
of the zeroth order ones, and the series expansion is made with a modified interaction, not the
original SI . Specifically, DPT consists in three main steps:

• Quark and gluon self-energies, quadratic in the quark and gluon fields, are added toS0 and
subtracted fromSI :

S0 → S 0 = S0+ 〈ψ Σ ψ〉+ 〈Aµ Πµν Aν〉, (2.6)

SI → S I = SI −〈ψ Σ ψ〉− 〈Aµ Πµν Aν〉, (2.7)

where〈ψ Σ ψ〉 and〈AΠA〉 are shorthand notations for double integrals involving thequark
and gluon fields and self-energies that will be spelled out shortly ahead. This will not change
the original action, asS 0+S I = S0+SI = S ;

1The SU(N) generators areTa = λ a/2, a= 1, · · · ,N2−1, with normalization Tr(TaTb) = δ ab/2, and[Ta,Tb] =

i f abcTc, (Ta)ik(Ta)k j = CF δ i j , f ikl f jkl = CAδ i j , CF = (N2 − 1)/2N, CA = N. Euclidean metric conventions are:
A·B= ∑4

i=1 AiBi ; {γµ ,γν}= 2δγν ; γ†
µ = γµ ; γ5 =−γ1γ2γ3γ4:

γ1,2,3 =

(

0 −i σ1,2,3

i σ1,2,3 0

)

, γ4 =

(

1 0
0 −1

)

,

whereσ1,σ2,σ3 are the Pauli matrices. Einstein’s convention of summationover repeated indices is used in the paper.
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• Correlation functions are calculated as a power series inS I ;

• A criterion is defined to fix self-consistently the self-energiesΣ andΠ.

The first step leads to the following expressions forS 0 andS I :

S 0 =
∫

d4xd4yψ(x)S
−1
(x−y)ψ(y)+

1
2

∫

d4xd4yAa
µ(x)

(

D
−1
)ab

µν
(x−y)Ab

ν(y), (2.8)

with

S
−1
(x−y) = S−1

0 (x−y)+Σ(x−y), (2.9)

(

D
−1
)ab

µν
(x−y) =

(

D−1
0

)ab

µν (x−y)+Πab
µν(x−y), (2.10)

and

S I = δ
∫

d4x

[

igψ(x)γ ·AaTaψ(x)−g fabc∂µAa
ν(x)A

b
µ (x)A

c
ν(x)

+
1
4

δg2 f abcf adeAb
µ(x)A

c
νAd

µ(x)A
e
ν(x)

]

− δ 2
∫

d4xd4y

[

ψ(x)Σ(x−y)ψ(y)−
1
2

Aa
µ(x)Πab

µν(x−y)Ab
ν(y)

]

. (2.11)

The parameterδ here is introduced for bookkeeping purposes in the implementation of the second
step of DPT: correlation functions and observables are calculated as a power series inδ and, at
the end of the calculation,δ is put equal to one. It is important to note that an expansion in δ
is not equivalent to an expansion ing, as the added self-energiesΣ and Π0µν will turn out to
be non analytic functions ofg. Also, δ is not meant to be a “small expansion parameter”; as
said, it is introduced to control the expansion. It isS I that is meant to be “small", in the sense
that contributions to correlation functions and observables calculated perturbatively withS I will
become smaller and smaller as the order inδ is increased.

The third step of DPT consists in defining a criterion for fixing the self energiesΣ0 andΠ0µν .
One possible criterion is the following. Quark and gluon self-energies calculated perturbatively
with S I will be given as a power series inδ :

Σ = Σ+δ 2Σ2+δ 4Σ4+ · · · , (2.12)

Πµν = Πµν +δ 2Π2 µν +δ 4Π4µν + · · · , (2.13)

where the zeroth order self energiesΣ andΠµν are those introduced in Eqs. (2.6) and (2.7). Note
that from theδ dependence ofS I , there are no odd powers ofδ contributing to the quark and gluon
self energies. As in ordinary perturbation theory, calculations are most easily done in momentum
space. The zeroth order propagators in momentum space of DPTare given in terms of the Fourier
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transformsΣ(p) andΠµν(p) of respectivelyΣ(x−y) andΠµν(x−y) by:

S(p) =
1

iγ · p+m+Σ(p)
, (2.14)

Dµν(p) =

(

δµν −
pµ pν

p2

)

1

p2[1+Π(p2)]
+ξ

pµ pν

p4 , (2.15)

whereΠ is defined viaΠµν(p2) = (δµν p2− pµ pν)Π(p2). TheΣ andΠµν can be fixed by imposing
that the first non trivial contributions toΣ(p) andΠµν in Eqs. (2.12) and (2.13) vanish, that is:

Σ2(p) = 0 and Π2µν = 0. (2.16)

The second order contributionsΣ2(p) andΠ2µν are depicted in Fig. 1.

= −Σ2 Σ0

= +Π2µν

+ − Π0µν

Figure 1: Diagrammatic representation ofΣ2 (upper graphs) andΠ2µν(p) (lower graphs). The solid and
curly lines represent the dressed propagatorsSandD, respectively.

The imposed conditionsΣ2 = 0 andΠ2µν = 0 lead to the following self-consistent coupled
integral equations forΣ0(p) andΠ0µν(p) (for two flavors):

Σ(p) =
4
3

g2
∫

d4q
(2π)4 Dµν(p−q)γµ S(q)γν , (2.17)

Πµν(p) = −g2
∫

d4q
(2π)4 TrD

[

γµS(p+q)γνS(q)
]

+CONSTtad (2.18)

+
3
2

g2
∫

d4q
(2π)4 Nµρσ(p,−p−q,q)Dσσ ′(q)Dρρ ′(p+q)Nσ ′ρ ′ν(q,−(p+q), p), (2.19)

where TrD means trace over Dirac spinor indices, CONSTtad is a constant from the four-gluon
tadpole andNµνρ is the bare three-gluon vertex (all gluon momenta entering the vertex),

Nµνρ(k, p,q) =−i(k− p)ρ δµν − i(p−q)µδνρ − i(q−k)νδµρ . (2.20)
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Fig. 2 is a graphical representation these two equations. They are self-consistent because the un-
knownsΣ0 andΠ0µν are contained in the zeroth-order propagatorsSandDµν in the integrals.

=Σ0

= +Π0µν +

Figure 2: Diagrammatic representation of the dressed rainbow and random phase approximations for the
quark (upper graphs) and the gluon self-energies (lower graphs).

Eq. (2.17) - depicted by the upper graph in Fig. 2 - is thedressed rainbow approximationfor
the quark propagator; the difference from the usual rainbowapproximation is thatD

(0)
µν is not the

bare gluon propagator. Similarly, Eq. (2.19) - lower graph in Fig. 2 - gives thedressed random
phase approximationfor the gluon propagator; a generalized random phase approximation, in that
quark and gluon bubbles are summed with self-consistent dressed quark and gluon propagators.

Eqs. (2.17) and (2.19) provide a starting point for DPT, as the zeroth order has been defined
and higher order contributions can be calculated systematically like in ordinary perturbation theory.
The next order of contribution to the quark and gluon self energies areO(δ 4). At this order, the
(internal) quark and gluon lines in Fig. 2 get dressed with insertions of theO(δ 2) self-energies
Σ2 andΠ2µν , and new graphs representing dressing of the quark-gluon and three- and four-gluon
gluon vertices appear. Because of lack of space, from now on we will concentrate on the quark
propagator.

TheO(δ 4) contributions to the quark self-energy are are depicted in Fig. 3. When imposing
Eqs. (2.17) and (2.19) on the insertedO(δ 2) self-energies, the two first graphs vanish and only
the quark-gluon vertex corrections (two last graphs) contribute toΣ4. The same feature happens
with theO(δ 4) contributions to the gluon self-energy, theO(δ 2) on internal quark and gluon lines
vanish and only vertex corrections contribute. One of them is similar to the (Abelian) one-photon
vertex correction in QED, which we denoteΣA

4 , and the other contribution is a three-gluon vertex
(non-Abelian), which we denoteΣnA

4 ; they are given by

ΣA
4(p) =

N2
c −1
4N2

c
g4
∫

d4q
(2π)4

∫

d4l
(2π)4 Dµν(p−q)γµ S(q)γρ S(q+ l)γν S(p+ l)Dρσ (l)γσ , (2.21)

and

ΣnA
4 (p) = −i

N2
c −1
4

g4
∫

d4q
(2π)4

∫

d4l
(2π)4 Dµν(p−q)γµ S(q)Nνρσ (p−q,q− l , l − p)

×γσ ′ Dσ ′ρ(q− l)S(l)γρ ′ Dσ ′σ (l − p). (2.22)
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Here we have written explicitly the dependence on the numberof colorsNc; as can be seen, the
Abelian contribution is 1/N2

c suppressed with respect to the non-Abelian contribution. Asimple
application of DPT to a contact gluon propagator has been made in Ref. [20]. The dominance of
the non-Abelian vertex over over the Abelian correction canbe nicely seen.

=Σ4
+

++

Π2µν

Σ2

Figure 3: Diagrammatic representation of theO(δ 4) to the quark self-energy. The solid and curly lines
represent the dressed propagatorsSandD, respectively.

From the exact DSE for the quark self-energy

Σ(p) =
∫

d4q
(2π)4 g2Dµν(p−q)γµTa S(q)Γa

ν(q, p), (2.23)

and Eqs. (2.21) and (2.22), one deduces theO(δ 4) AbelianΓaA
µ and non-AbelianΓanA

µ contributions
to the full quark-gluon vertex :

Γa
µ = γµ Ta+ΓaA

µ +ΓanA
µ , (2.24)

with

ΓaA
µ (q, p) =−g2 TbTaTb

∫

d4l
(2π)4 γρ S(q+ l)γµ S(p+ l)Dρσ (l)γσ , (2.25)

and

ΓanA
µ (q, p) =−g2 f abcTbTc

∫

d4l
(2π)4 Nµρσ(p−q,q− l , l − p)γσ ′ Dσ ′ρ(q− l)S(l)γρ ′ Dσ ′σ (l − p),

(2.26)
where we made use ofTbTaTb = −Ta/2Nc and f abcTbTc = iT a Nc/2. Here, one recognizes the
(dressed) one-loop correction to the quark-gluon vertex.

CorrectionsO(δ 4) to the gluon propagator are also vertex corrections. In order to maintain
local gauge symmetry, explicit ghost fields must be considered. The same perturbation procedure
can be implemented for ghosts; imposing thatO(δ 2) contributions vanish, like in Eq. (2.16) for
the quark and gluon self-energies, the zeroth-order ghost self-energies become determined: they
satisfy a self-consistent Dyson-Schwinger equation with bare vertices.

Like with other truncation schemes in QCD, an important issue that must be observed is the
preservation of Ward identities related to global symmetries. Amongst all, the axial-vector Ward-
Takahashi identity plays prominent role in connection withthe approximate chiral symmetry of

7
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QCD in the light quark sector, and the identification of the pion as the associated pseudo Nambu-
Goldstone boson as solution of the homogeneous Bethe-Salpeter in the isovector pseudoscalar
channel. In the hypothetical chiral limit, the pion would bemassless - which is the content of
Goldstone’s theorem. This the subject of the next section.

3. Bether-Salpeter equations, Goldstone Theorem and Ward-Takahashi identities

Meson bound states can be obtained from the homogeneous Bethe-Salpeter equation (BSE)

[ΓM(q;P)]AB =

∫

d4k
(2π)4 [KM(q,k;P)]AC,DB [S(k+)ΓM(p,k;P)S(k−)]CD , (3.1)

whereKM(q,k;P) is the fully amputated quark-antiquark scattering kernel;A,B, · · · denote collec-
tively color, flavor, and spinor indices; andk± = k±η±P, with η++η− = 1. Here,k is relative
momentum, andP is total momentum; ifk1 and k2 are the momenta of particles 1 and 2, then
k1 = k+η+P, andk2 = k−η−P. The mass of the meson is the eigenvalueP2 = −M2. Let us
consider the Bethe-Salpeter amplitude in the pion channel,ΓM ≡ τ i Γi

π , whereτ i, i = 1,2,3, are
the Pauli isospin matrices. The general structure (w.r.t. parity, charge conjugation, and Lorentz
transformations) ofΓπ is:

Γπ = γ5
(

iEπ + γ ·PFπ + γ ·k γ ·PGπ +σµνqµPν Hπ
)

, (3.2)

whereEM,FM, · · · are scalar functions ofq andP. In the chiral limit,m= 0 in Eq. (2.4), DχSB
demands that Eq. (3.1) has a solution withP2 = 0 in the pseudoscalar channel.

Closely related to the pion bound state amplitudeΓa
π(q;P), is the pseudovector vertex function

Γa
5µ(q;P), which satisfies the inhomogeneous BSE (omitting a renormalizationZ2 factor multiply-

ing the inhomogeneous term):

[

Γi
5µ(q;P)

]

AB
=
[

τ iγ5γµ
]

AB+
∫

d4k
(2π)4 [KM(q,k;P)]AC,DB

[

S(k+)Γi
5µ(k;P)S(k−)

]

CD
. (3.3)

The Ward-Takahashi identity for in the chiral limitm= 0, reflecting the conservation of the axial-
vector current in QCD, is :

PµΓi
5µ(q;P) = S−1(q+)iγ5τ i + iγ5τ iS−1(q−). (3.4)

Using hereS−1(p) = iγ · p+Σ(p), with Σ(p) given by the exact expression in Eq. (2.23), one can
rewrite the identity as

∫

d4k
(2π)4

{

g2Dµν(q+−k)
[

γµTaS(k)Γa
ν(k,q+)γ5

]

AB+g2Dµν(q−−k)
[

γ5γµTaS(k)Γa
ν(k,q−)

]

AB

}

=

∫

d4k
(2π)4 [K(q,k;P)]AC,DB [S(k+)γ5+ γ5S(k−)]CD . (3.5)

This shows that there is a dynamical relation imposed by chiral symmetry between the quark self-
energy.

8
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The issue we address next is whether Goldstone’s theorem andthe Ward-Takahashi identity are
obeyed order by order in DPT. When theexactDSE has a nonzero solution for the scalar part of the
quark self-energy, then theexactBSE has a massless solution in the quark-antiquark pseudoscalar
channel - the Nambu-Goldstone boson. A priori, since DPT provides an approximate treatment for
the DSE, it is not obvious that a Nambu-Golsdstone boson willbe obtained from the corresponding
approximate DSE. The question can be paraphrased as follows: given the Dyson-Schwinger equa-
tion for the quark self-energy at zeroth order, what is the corresponding quark-antiquark scattering
kernel that produces a Nambu-Gol dstone boson? The answer tothis question is similar to the one
provided in Ref. [3] in the context of an improved rainbow-ladder approximation: given a DSE for
the quark self-energy, the kernel of the corresponding BSE equation is obtained via the replacement

γµ S(k)γν → γµ S(k+)Γπ(k;P)S(k−)γν . (3.6)

That is, one cuts the internal dressed quark line in the quarkself-energy graph to introduce the
meson total momentumP. Let us examine this scheme in DPT at zeroth order.

We define, as usual

S−1(p) = iγ · p+m+Σ(p)≡ i γ · pA(p2)+B(p2), (3.7)

whereA(p2) andB(p2) are Lorentz scalar functions. In the chiral limit (m= 0), DχSB is charac-
terised by a nonzero solution of the integral equation for the scalar part of the quark self-energy,
i.e. B(p2) 6= 0. At zeroth order, Eq. (2.17), the integral equation forB(p2) is

B(p2) =
16
3

g2
∫

d4q
(2π)4 Dµµ(p−q)

B(q2)

q2 A
2
(q2)+B

2
(q2)

. (3.8)

At this level of approximation, the scheme of Ref. [3] leads to the following kernel for the BSE

[KM(q,k;P)]AC,DB =−g2(γµTa
)

AC Dµν(q−k) (γνTa)DB . (3.9)

Clearly, this amounts to cutting the internal dressed quarkline in the quark self-energy graph in
Fig. 2 - top graph. Replacing this kernel into Eq. (3.1) and putting P= 0 in Eq. (3.2), which gives
Γπ(q;0) = iγ5 Eπ(q2), one can easily show that:

Eπ(q
2) =

16
3

g2
∫

d4k
(2π)4 Dµµ(q−k)

Eπ(k2)

k2 A
2
(k2)+B

2
(k2)

. (3.10)

Comparing with Eq. (3.8), one concludes:

Eπ(q
2)∼ B(q2). (3.11)

Therefore, if atO(δ 0) the DSE givesB(q2) 6= 0, there is a massless pseudoscalar quark-antiquark
bound state in the spectrum.

Let us now examine the Ward-Takashi identity at his zeroth order. Using in Eq. (3.5) theO(δ 0)

quark propagator, BSE kernel and quark-gluon vertexΓµ(q, p) = γµ Ta, one obtains

∫

d4k
(2π)4

{

g2Dµν(q+−k)
[

γµTaS(k)γνTaγ5
]

AB+g2Dµν(q−−k)
[

γ5γµTaS(k)γνTa]

AB

}

9
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=−

∫

d4k
(2π)4 g2(γµTa)

AC Dµν(q−k) (γνTa)DB

[

S(k+)γ5+ γ5S(k−)
]

CD

=
∫

d4k
(2π)4 g2Dµν(q−k)

{[

γµTaS(k+)γνTaγ5
]

AB+
[

γ5γµTaS(k−)γνTa]

AB

}

. (3.12)

Trivial changes of variables establish the identity.
Given that we have a stating point that preserves Goldstone’s theorem and satisfies the axial-

vector Ward-Takahashi identity, let us examine the application of the cutting scheme of Ref. [3] to
the next order in DPT. Application of the scheme to theO(δ 4) quark self-energy amounts to cut
sequentially the dressed internal quark lines in the two lower graphs of Fig. 3. This process leads
to the followingO(δ 4) quark-antiquark scattering kernel:

K4(q,k;P) = KA
4 (q,k;P)+KnA

4 (q,k;P), (3.13)

whereKA
4 (q,k;P) andKnA

4 (q,k;P) correspond respectively to the AbelianΣA
4(q) and non-Abelian

ΣnA
4 (q) contributions to the quark self-energy; they can be writtenas:

[

KA
4 (q,k;P)

]

AC,DB = g2Dµν(q−k)
{

[

γµTa]

AC

[

ΓaA
ν (k−,q−)

]

DB+
[

ΓaA
µ (k+,q+)

]

AC
[γνTa]DB

}

−g4
∫

d4l
(2π)4 Dµν(l)Dρσ (q− p+ l)

[

γµTaS(k+− l)γρTb
]

AC

[

γνTb S(q−+ l)γσ Ta
]

DB
,(3.14)

where in the last equation we used the explicit expression for ΓaA(k,q) given in Eq. (2.25), and

[

KnA
4 (q,k;P)

]

AC,DB = g2Dµν(q−k)
{

[

γµTa]

AC

[

ΓanA
ν (k−,q−)

]

DB+
[

ΓanA
µ (k+,q+)

]

AC
[γνTa]DB

}

.

(3.15)
Replacing these into Eq. (3.5) and usingΓa(k,q) = ΓaA(k,q) + ΓaA(k,q), after anticommuting
γ5 with severalγ matrices and trivial changes of variables, the Ward-Takahashi identity can be
established at this order as well.

In principle, there are dressed quark lines running in the dressed gluon propagatorDµν and
cutting them gives rise to annihilation processes which contribute to isoscalar channels. These are
particularly crucial ingredients in studies where the non-Abelian axial anomaly plays dominant
role, like in theη −η ′ mass splitting [3, 21]. For flavor non-diagonal meson stateswe consider
here, these annihilation processes do not contribute.

The same scheme just described can be applied to other Ward-Takahashi identies, e.g. those
arising from global U(1) symmetries. A particular important example is conservation of the electro-
magnetic current. The corresponding Ward-Takahashi identity imposes constraints to the electron-
photon vertex function, which is a ingredient in the calculation of hadron form factors and quark
distribution functions.

Note that the expressions for the kernel atO(δ 4) in Eqs. (3.14) and (3.15) are precisely
those one would obtain using Feynman rules derived fromS I , Eq. (2.11). The “extraneous” term
δ 2 ψ Σ ψ , which is subtracted from the original QCD Lagrangian, doesnot contribute to the ker-
nel: its iteration,δ 4

(

ψ Σ ψ
) (

ψ Σ ψ
)

, certainly contributes toK4 but, in view of Eq. (2.16), this
contribution is cancelled by a same-order term which comes from the mixing ofδ 2 ψ Σ ψ with the
dressed one-gluon exchange,δ 4

(

ψ Σ ψ
)

(ψγ ·AaTaψ)
(

ψγ ·AbTbψ
)

.
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Contributions of higher orders inδ for the DSEs of quark and gluon self-energies and BSE
kernels can be obtained using Feynman rules derived fromS I . They consist of multiple quark and
gluon loops, in which cancellations of the termsψ Σ ψ andA Π A, of the kind described above, will
happen at each order. However, one does not need to worry about such cancellation to construct the
BSE kernels if one uses the cutting scheme of Ref. [3], which can be implemented in a automated
and analytical way. As explained in Ref. [5], one can use the general relation between the BSE
kernel and the quark self-energy:

[

KM(x′,y′;x,y)
]

AC,DB =−
δΣAB(x,y)
δSCD(x′,y′)

, (3.16)

whereΣ(x,y) is obtained from an effective action in the presence of a bilocal source forψ(x)ψ(y)
so that translational invariance is recovered only after removing the source [22]. The reason for
stating the expression in coordinate space is to make clear that one has the correct number of
independent space-time coordinates to produce, under Fourier transformation, aKM(q,k;P) with
the correct total momentumP dependence.

4. Conclusions and Perspectives

In this communication we have introduced DPT: a perturbative approach based on the idea of
using dressed propagators, instead of free propagators like in ordinary perturbation theory. As we
have shown, at lowest orderO(δ 0), DPT is very similar to the rainbow-ladder truncation scheme,
at O(δ 4), the next contributing order, vertex corrections are introduced. Higher order corrections
can be calculated in systematic and controllable way, very much similar to ordinary perturbation
theory. We have shown explicitly that Ward-Takahashi identity is obeyed atO(δ 4), and Golstone’s
theorem is respected.

We have not discussed local gauge invariance. This requiresthe introduction of ghost fields.
However, from the discussions presented, it should be clearthat DPT is applicable to the DSEs
involving ghost fields. Imposing thatO(δ 2) contributions vanish, like in Eq. (2.16) for the quark
and gluon self-energies, the zeroth-order ghost self-energies become determined: they satisfy a
self-consistent Dyson-Schwinger equation with bare vertices. But now, Slavnov-Taylor identities
must be considered, which replace the Ward-Takahashi identities of local symmetries; they are
much more complicated as they involve also aghast propagators, not only quark and gluon prop-
agators. In this respect, the Pinch Technique (or the background field method) can be of great
help, as the only Ward-Takahashi appear [23]. Also, we have not considered renormalization is-
sues, because of lack of space. Up toO(δ 4), one can show explicitly that DPT is multiplicatively
renormalizable [24].
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