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1. Introduction

The QCD transition from a hadronic, confined system to a partonic one at zero baryo-chemical
potential is an analytic cross-over, as was unambiguously shown by lattice QCD simulations [1].
This feature extends to small chemical potentials, covered by the high energy runs at RHIC. The
possibility that the transition becomes first order at large chemical potentials has triggered the low
energy runs at RHIC, soon to be followed by the CBM experiment at the GSI, in search for the
elusive critical point. In order to successfully spot its position, one needs to define observables
which are sensitive to the change in the order of the phase transition. Event-by-event higher order
fluctuations of conserved charges are expected to diverge in the presence of a first order phase
transition, and have therefore been proposed long ago to this purpose [2, 3, 4].

Parallel to the experimental effort lattice field theory has been able to describe the QCD tran-
sition with increasing precision. The transition temperature has been determined [5, 6], and the
curvature of the transition line was also given [7]. The equation of state has been calculated at zero
[8, 9] and small chemical potentials [10]. Quark number susceptibilities have also been determined
both for strange as well as light flavors [11, 12]. All these observables have been extrapolated to
the continuum limit.

The chemical freeze-out, defined as the last inelastic scattering of hadrons before detection, has
already been characterized in terms of temperature and chemical potential, by fitting the pion, kaon,
proton and other accessible particle yields from experiment within the statistical hadronization
model [13, 14]. For higher collision energies, smaller chemical potentials are realized at freeze-
out. Repeating the analysis for a series of beam energies yields several (T −µ) pairs on the phase
diagram. The ever-increasing accuracy of fluctuation measurements at RHIC and LHC allows us
today to make direct comparisons of lattice results with data. The STAR experiment has recently
published the beam-energy and centrality dependence of the net-proton distribution [15]. For the
net electric charge distribution there are preliminary results available both from the STAR [16, 17]
and from the PHENIX collaborations [18].

The strategy for a successful comparison between theory and experiment has been defined in
several steps [19, 20, 21]. Here we use the observables suggested in Ref. [22]. The fluctuations
for a conserved quantum number, such as electric charge, are measured in a sub-system, small
enough to behave like a grand canonical ensemble, yet large enough to behave like an ensemble.
The selection of a subsystem is accomplished through cuts in rapidity and transverse momentum.
Still, the fluctuations or even the mean value of net charge depends on the unknown subvolume. To
cancel this factor, ratios of fluctuations are usually considered.

In this contribution, we show the continuum-extrapolated results for higher order fluctuations
of electric charge and baryon number, which can be compared to the final, efficiency-corrected
experimental data, once they become available [28].

2. Fluctuations from the lattice

Similarly to previous works, we choose a tree-level Symanzik improved gauge, and a stout-
improved staggered fermionic action (see Ref. [23] for details). The stout-smearing [24] reduces
taste violation (this kind of smearing has one of the smallest taste violations among the ones used
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in the literature for large scale thermodynamic simulations, together with the HISQ action [25, 26]
used by the hotQCD collaboration). This lattice artifact needs to be kept under control when study-
ing higher order fluctuations of electric charge, which are pion-dominated at small temperatures,
and thus particularly sensitive to this issue.

The continuum extrapolation is mainly performed on the basis of five lattice spacings, cor-
responding to temporal lattice extents of Nt = 6, 8, 10, 12, 16 (around Tc these extents result in
lattice spacings of a = 0.22,0.16,0.13,0.11 and 0.08 fm, respectively). At every lattice spacing
and temperature we analyzed every 10th configuration in the rational hybrid Monte Carlo streams
with 128. . . 256 quartets of random sources. The statistics for each point is shown in Fig. 1. We
follow the extrapolation strategy that we have discussed in Ref. [11], and perform several possible
continuum fits (with and without a beyond-a2 term, keeping or dropping the coarsest lattice, using
tree-level improvement [8] or not, fitting the observable or the reciprocal of the observable, choos-
ing between two possible interpolations). Weighting these continuum results by the goodness of the
fit a histogram is formed, the width of which defines the systematic error (for details see Ref. [27]).
In this paper we show the combined systematic and statistical errors on the continuum data.

In a grand canonical ensemble we obtain the fluctuations as derivatives of the partition function
with respect to the chemical potentials:

χ
BSQ
lmn

T l+m+n =
∂ l+m+n(p/T 4)

∂ (µB/T )l∂ (µS/T )m∂ (µQ/T )n . (2.1)

and they are related to the moments of the distributions of the corresponding conserved charges by

mean : M = χ1 variance : σ
2 = χ2

skewness : S = χ3/χ
3/2
2 kurtosis : κ = χ4/χ

2
2 . (2.2)

With these moments we can express the volume-independent ratios

Sσ = χ3/χ2 ; κσ
2 = χ4/χ2

M/σ
2 = χ1/χ2 ; Sσ

3/M = χ3/χ1 . (2.3)

The experimental conditions are such, that the three chemical potentials µB, µQ and µS are
not independent of each other: the finite baryon density in the system is generated by the nucleon
stopping in the collision region, and is therefore due to light quarks only. Strangeness conservation
then implies that the strangeness density 〈nS〉 = 0. Similarly, the initial isospin asymmetry of the
colliding nuclei yields a relationship between the electric charge and baryon-number densities:
〈nQ〉= Z/A〈nB〉. For Au-Au and Pb-Pb collisions, a good approximation is to assume Z/A = 0.4.

Therefore, the dependence of µQ and µS on µB needs to be defined so that these conditions are
satisfied. We take care of this by Taylor-expanding the densities with respect to the three chemical
potentials up to order µ3

B [22]:

µQ(T,µB) = q1(T )µB +q3(T )µ3
B + ...

µS(T,µB) = s1(T )µB + s3(T )µ3
B + ... (2.4)
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Figure 1: Statistics behind the fluctuation calculations. The stored configurations have been separated by
10 HMC trajectories, each. Each configuration was analyzed by (128 . . .256)×4 random sources.

These equations define q1, q3 and s1 and s3, respectively. Our continuum extrapolated data for the
functions q1(T ), q3(T ), s1(T ), s3(T ) are shown in Fig. 2. Our data are compared to the BNL-
Bielefeld group’s result, where q1 and s1 was continuum extrapolated. They obtained q3 and s3

from Nt = 8 lattices using the HISQ action [22].

The chemical potential dependence enters through the fermion determinant (detMi), allowing
for one µi parameter for each of the three dynamical flavor i = u,d,s. The actual observables are
based on the derivatives of the logarithm of these determinants:

A j = d
dµ j

log(detM j)
1/4 =

1
4

TrM−1
j M′j , (2.5)
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Figure 2: Upper panels: leading order contribution in µB for the strangeness (left figure) and the electric
charge (right figure) chemical potentials. The lower panels show the corresponding NLO contributions. In
all panels, the black dots correspond to the continuum extrapolated results. The BNL-Bielefeld results are
shown as blue pentagons.

4



P
o
S
(
Q
C
D
-
T
N
T
-
I
I
I
)
0
3
3

Freeze-out parameters C. Ratti

B j =
d2

(dµ j)2 log(detM j)
1/4 =

1
4

Tr
(

M′′j M−1
j −M′jM

−1
j M′jM

−1
j

)
, (2.6)

C j =
d3

(dµ j)3 log(detM j)
1/4 =

1
4

Tr
(

M′jM
−1
j −3M′′j M−1

j M′jM
−1
j

+2M′jM
−1
j M′jM

−1
j M′jM

−1
j

)
, (2.7)

D j =
d4

(dµ j)4 log(detM j)
1/4 =

1
4

Tr
(

M′′j M−1
j −4M′jM

−1
j M′jM

−1
j +12M′′j M−1

j M′jM
−1
j M′jM

−1
j

−3M′′j M−1
j M′′j M−1

j −6M′jM
−1
j M′jM

−1
j M′jM

−1
j M′jM

−1
j

)
. (2.8)

We calculate these traces for every configuration using (128 . . .256)×4 random sources. The final
derivatives emerge as connected and disconnected contributions, e.g. to second order we have

∂i∂ j logZ =
〈
AiA j

〉
+δi j 〈Bi〉 . (2.9)

Where products of diagrams appear, a disjoint set of random sources are used, like here in Ai and
A j, even when i = j. The first (disconnected) term is responsible for most of the noise, lattice
artefacts, on the other hand, come mainly from the connected contributions.

3. Results

The quantities that we look at, in order to extract the freeze-out temperature and baryon chem-
ical potential, are the ratios RQ

31(T,µB) = χ
Q
3 /χ

Q
1 and RQ

12(T,µB) = χ
Q
1 /χ

Q
2 for small chemical

potentials, where µQ(µB) and µS(µB) are chosen to satisfy Eqs. (2.4). We also calculated the anal-
ogous baryon fluctuations (for details, see the journal version of this work [28]):

RQ
31(T,µB) =

χ
Q
3 (T,µB)

χ
Q
1 (T,µB)

= (3.1)

χ
QB
31 (T,0)+χ

Q
4 (T,0)q1(T )+χ

QS
31 (T,0)s1(T )

χ
QB
11 (T,0)+χ

Q
2 (T,0)q1(T )+χ

QS
11 (T,0)s1(T )

+O(µ2
B)

RQ
12(T,µB) =

χ
Q
1 (T,µB)

χ
Q
2 (T,µB)

=

χ
QB
11 (T,0)+χ

Q
2 (T,0)q1(T )+χ

QS
11 (T,0)s1(T )

χ
Q
2 (T,0)

µB

T
+O(µ3

B).

The leading order in χ
Q
3 /χ

Q
1 is independent of µB, which allows us to use RQ

31 to extract the freeze-
out temperature. Once Tf has been obtained with this method, the ratio RQ

12 can then be used to
determine µB. Notice that in Eq. (3.1) we write the expansion of RQ

12, but in the plots we will show
our results up to NLO.

In Fig. 3 we show the ratios RQ
31 (left) and RB

31 (right) as functions of the temperature. The
continuum extrapolations are shown as black dots. For the charge fluctuations we used five lattice
spacings. Baryon fluctuations are plagued by greater noise, but are less sensitive to cut-off effects;
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Figure 3: Lattice results on the skewness ratio for the charge (left) and the baryon number (right). The col-
ored symbols correspond to lattice QCD simulations at finite-Nt . Black points correspond to the continuum
extrapolation [28]; blue pentagons are the Nt = 8 results from the BNL-Bielefeld collaboration [22]

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0  20  40  60  80  100  120  140  160  180  200

µB [MeV]

R
Q
12=MQ/σQ

2

T=145 MeV
T=150 MeV
T=155 MeV
T=160 MeV

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0  20  40  60  80  100  120  140  160  180  200

µB [MeV]

R
B
12=MB/σB

2

T=145 MeV
T=150 MeV
T=155 MeV
T=160 MeV

Figure 4: RQ
12 (left panel) and RB

12 as functions of µB: in both panels, the different colors correspond to the
continuum extrapolated lattice QCD results, calculated in a range of temperatures around the QCD crossover
[28].

here we used four spacings to obtain the continuum extrapolated results. Charge fluctuation results
from the BNL-Bielefeld collaboration corresponding to Nt = 8 (from Ref. [22]) are also shown for
comparison.

In Fig. 4 we show our results for RQ
12 and RB

12 as functions of the baryon chemical potential:
the different curves correspond to different temperatures, in the range in which the freeze-out is
expected. Such expectations may come from the arguments in Ref. [29] supporting a freeze-out
just below the transition. Alternative hints come from the existing estimates from the statistical
hadronization model [13, 14].

Notice that the ordering of the temperatures in Fig. 4 (left) and (right) is opposite. Thus,
whether the chemical potentials from the charge and the baryon (proton) fluctuations deliver con-
sistent results will very much depend on the associated temperature, which we can extract from
the skewness analysis. A possible source for inconsistencies might be the comparison of proton
fluctuation data with baryon fluctuations from the lattice, and also the remnant effects of baryon
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Figure 5: The baryon number (left) and flavor specific (right) kurtosis (κ ×σ2) prediction from lattice
QCD. These parameters are in principle accessible to LHC experiments, and may be used to define the
freeze-out temperature for specific flavors, or for the system as a whole.

number conservation [30]. A cross-check between the freeze-out parameters from proton and elec-
tric charge data will also allow to test the basic assumption of thermal equilibrium at the time of
freeze-out.

Finally, we show the kurtosis data in the continuum limit in Fig. 5. The kurtosis of baryon
number and light vs. strange quark numbers show different sensitivity to temperature: the maxima
and the deviation points from the hadron resonance gas prediction turn out to be flavor-dependent.
The great question that the experiment will have to decide is whether the freeze-out temperatures
themselves are flavor dependent [31].
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