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1. Introduction

The study of quantum many-body systems (QMBS) in a strongly-correlated regime happens
to be a crucial and challenging task both in condensed matter theory and in high-energy physics.
Indeed, gauge theories are a special kind of QMBS, where states of the system are forced to obey
local symmetry constraints. They stand at the core of our understanding of known fundamental
interactions (electro-weak, strong, and, more broadly, gravitational) [1, 2]; on the other hand, they
are also candidates to describe the low-energy physics of frustrated anti-ferromagnets [3] and high-
temperature superconductors [4]. Despite the apparent simplicity of models involving interactions
among only few of their constituents, we still very often miss generic computational tools to extract
reliable quantitative information from them. The complexity of numerical simulations increases
exponentially with the number of the QMBS constituents, making it impossible to deal exactly with
more than few tens of particles [5]. Different approximate methods often provide different results,
so that physical properties of these models remain in most cases controversial. Relevant examples
in the high-energy domain include the hot and dense nuclear matter probed in heavy ion collisions
or the predictions of hadronic masses from first principles, as discussed in this conference.

A possible way out dates back to a famous Feynman’s conjecture [6] on the usefulness of a
universal quantum simulator [7], capable of solving relevant Hamiltonian models. Although the
feasibility of such an “all-purpose” quantum computer is still to be demonstrated, “purpose-built”
“analog” quantum simulators (emulators), whose constituents (photons, ions, atoms, electrons) are
used to encode the desired QMBS, exist and are already providing precious contributions to answer
open problems [8, 9]. The rationale of a quantum simulator, i.e. a purpose-built quantum computer,
is indeed to tailor the quantum Hamiltonian of interest in a highly controllable physical system
(i.e., one on which the detailed microscopic knowledge is accompanied by a clean tunability of the
parameters), and to retrieve all the desired information with a measurement of its properties, a task
as crucial as the efficient preparation and simulation itself [9, 10]. A careful analysis of reliability
and efficiency in the presence of unavoidable imperfections is of course also relevant [10]. Having
such a device at disposal would also offer the possibility to bring abstract models into life, i.e., to
realise theoretical models that have been up to now only “blackboard” exercises not observed in
nature. One could then access unexplored regimes to pose new questions and possibly advance the
understanding of an a priori distant phenomenology.

In the following, we first offer a brief overview of the use of ultracold atoms as quantum
simulators [11 – 13], especially in the direction of gauge potentials and fields [14, 15] (Sec. 2); then
we sketch the main ideas of a proposal of ours [16 – 18] for a flexible toolbox to embody different
effective relativistic fermionic models (Sec. 3); finally we close with some remarks (Sec. 4).

2. Ultracold atoms as quantum simulators

2.1 Cold atoms and optical lattices

Among the many possible physical realizations of quantum simulators [8, 9], ultracold atomic
gases have already demonstrated to be extraordinarily useful tools for the investigation of effects
originally predicted in condensed-matter physics [11 – 13], and offer new exciting possibilities with
respect to the simulation of nuclear and high-energy physics (e.g. for color superconductivity and

2



Quantum Simulation of Relativistic Fermions with Cold Atoms M. Rizzi

exotic fermionic superfluidity [19, 20]). Ultracold atoms could also be capable of emulating sev-
eral aspects of hadronic matter in extreme conditions, relevant for compact stars [21] and for the
quark epoch of the Universe [22]. Moreover, such devices have provided information on the long
timescale behaviour of some non-equilibrium phenomena, for which classical numerical simula-
tions are bound to loose reliability at much shorter times [23], and this could be one of the most
useful ways to employ them also in the context of gauge phenomena.

The success of these systems relies on their ultra-low coupling to the environment, which en-
ables the measurement of ground state properties, as well as of the pure quantum dynamics, of
specifically-tailored quantum Hamiltonian models. Very powerful tools exist for this “quantum
engineering” task with cold atoms, primarily the possibility of trapping them in periodic potentials
created with standing waves of light, the so-called “optical lattices” [11 – 13], thus shaping the
kinetic part of the model. Such artificial crystals, almost free from defects and vibrations, can be
loaded with particles obeying either Bose or Fermi statistics, and even mixtures of them. Moreover,
a good control over collision properties of the system constituents can be achieved by tuning ex-
ternal parameters (e.g., the magnetic field) across so-called Feshbach resonances [24]; this allows
to scan many orders of magnitude of the interaction term in both repulsive and attractive side, in-
cluding the extremes of unitarity [25, 26] and non-interacting regimes [27, 28]. Powerful tools are
also at disposal for the characterization and study of the quantum phases realized in these setups,
ranging from momentum distributions to single-site imaging in real and spin space,thus fulfilling
the requirements for a good quantum simulator.

Let us sketch here the construction of optical lattice models, in order to get acquainted with
the language used later in Sec. 2.2 and 3. An atom illuminated by a laser of intensity I, detuned
by ∆ from one of its (optical) adsorption lines, behaves as an effective two-level system with an
off-diagonal coupling proportional to the dipole matrix element Γ between the electronic clouds
of the two levels (Fig. 1a). This originates a so-called AC Stark shift of the levels ∝ (Γ/∆)I, that
effectively acts as a potential for the center of mass dynamics of the atoms when they are “cold”
enough [29]1. Strong confinement in some direction may reduce the low-energy spectrum to that
of a system in a lower dimensionality. Maxima (or minima) of a periodic light pattern then identify
the lattice sites r j, around which one could define a basis of localized single-particle wavefunc-
tions w(r− r j), named after Wannier. By taking an expansion of the field operator ψ(r) onto
such a basis, i.e. ψ(r) = ∑ j w(r− r j)c j, the Hamiltonian of the system gets transformed into an
Hubbard-like model, where c j now describes the annihilation of a particle on a given site [30]2:

ε c†
jc j is an onsite energy term due to some external confinement;

J c†
jcl +h.c. is the kinetic term (J<0) due to the hopping (tunnelling) between adiacent sites;

Uc†
jc

†
jc jc j is a on-site interaction arising from the quartic term describing two-body collisions.

These coefficients depend also on the optical depth of the potential, since it changes the Wan-
nier wavefunctions themselves and therefore the relevant overlap integrals. Experimentalists have
therefore various knobs at disposal to tailor the lattice topology and its effective dimensionality, the
amplitude and the internal state (spin) dependence of tunnel coupling between the sites.

1typical potentials are of order 100 KHz, i.e. µK or 0.1 neV
2sub-indexing due to the internal state (spin) of the atoms, and the proper accounting for the bosonic/fermionic

statistics is here omitted for the sake of simplicity (see, e.g., [11 – 13] for more details)
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2.2 Artificial gauge potentials with cold atoms

When coming to the simulation of gauge phenomena, one has to distinguish two main ap-
proaches: the first one is to engineer a static configuration of the gauge field, i.e. a gauge potential
or classical field, like a static magnetic field affecting the orbits of charged particles moving in
it; the second one consists into donating indeed dynamics to the gauge fields, thus giving rise to
bosonic force carriers interacting with fermionic matter particles, as needed for the simulation of
fully-quantum gauge theories. Let us start reviewing the first one, which is currently the most
experimentally developed and lies at the basis of the proposal of ours sketched in Sec. 3.

A classical magnetic field influences the quantum mechanical motion of a charge e via the
insertion of its (gauge) vector potential A into the definition of a covariant derivative ∇∇∇→ ∇∇∇+

i(e/c)A: this leads then to the accumulation of an Aharanov-Bohm phase γ = (e/h̄c)
∮

A · dl =
2π Φ/(hc/e) around a closed, non-contractible, loop pierced by a magnetic flux Φ. A first idea to
engineer the same effect with neutral atoms relies on the equivalence between the Coriolis force in
a rotating system and the Lorentz force in a uniform magnetic field: experimentalists have realized
such A = mΩΩΩrot× r since the early times of atomic Bose-Einstein condensates and have achieved
quite spectacular results, though not managing to access the field intensities needed for Quantum
Hall regimes [31, 32]. A more general idea consists in letting the ground manifold |ψα(r)〉 depend
on the spatial coordinates of the center of mass r, thus realising an effective geometric vector
potential Aα,β (r) = ih̄〈ψα(r)|∇∇∇|ψβ (r)〉. If the atom moves now adiabatically around a closed
loop in real space, the exponential of the circulation integral of such a potential results into a non-
trivial unitary operation on the vectors of the manifold, in analogy to the Abelian phase factor eiγ

described before3. An experimental technique based on these ideas has been applied so far not only
to single-component Bose gases [33, 34] but also to BEC with two components, and a spin-orbit
coupling has been realized [35]. The reader interested in a wider overview of the current theoretical
and experimental status is addressed to a couple of excellent recent reviews [14, 15].

In order to emulate either condensed matter or high-energy phenomena, it is useful to extend
these ideas to the powerful platform of optical lattices. The kinetic term of matter fields (i.e., the
hopping matrix in the correspondent Hubbard model) needs then to be designed to embody the
parallel transporter of the gauge group one aims to engineer. Such a term can be understood as a
discretisation across a lattice link of the unitary operator introduced above, in a way that the circu-
lation around a plaquette is preserved. In the simple case of the electromagnetic U(1), the hopping
coefficient becomes complex and link dependent, i.e. J→ J jl = J eiϕ jl , with ϕ jl = (e/h̄c)

∫ l
j A ·dr

also known as Peierls phase. This can be achieved by time-dependent modulation or rotation of
the lattice itself [36 – 38],or also by a “laser-assisted tunnelling” between the sites, as first outlined
in [39, 40] and realized recently for staggered [41, 42] and uniform [43, 44] magnetic fluxes. In
this latter scheme, the spontaneous tunnelling is suppressed by raising the optical lattice power and
some additional laser beam (often a Raman pair of them) is arranged to induce a transition of the
center of mass coordinate of the atom between the initial and final lattice positions. While doing
that, a phase proportional to the scalar product of the light wave vector and the displacement is
left imprinted on the atomic wavefunction. Expanding on the same idea, it would be possible to

3the accumulated phase is often referred to as a Berry phase, and the described mechanism is analog to the Jahn-
Teller effect in molecular dynamics
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couple also the internal degrees of freedom (i.e. the mentioned hyperfine levels) and therefore to
create non-abelian gauge potentials as well, by interpreting the atomic levels as color indices of
the gauge group [45]. Even more exotic scenarios are possible if the hyperfine levels are seen as
position indices of some extra-dimension [46]. Non-abelian gauge potentials also open new possi-
bilities connected to emergent relativistic massless Dirac dispersions (including exotic effects like
Klein tunnelling and Zitterbewegung) and to the formation of topological insulators ([18] and ref-
erences therein) or to ground-states with non-abelian excitations, i.e. anyons, possibly useful in the
direction of quantum computation [47, 48].

In this framework of creating “synthetic” gauge potentials, interactions between the underly-
ing constituents of the simulator are often tuned to zero in order to get clean dispersion relations (as
done below in Sec. 3) or are exploited as independent knobs to achieve exotic many-body regimes
(e.g., quantum Hall states), but they never enter as key ingredients to engineer the gauge itself.
A tentative to translate the interatomic potentials into relativistic invariant interactions between
the emergent Dirac fermions has been put forward in Ref. [49]. We also already mentioned that
strongly-interacting fermionic atoms can mimic many aspects of confining gauge theories and sev-
eral aspects of hadronic matter in extreme conditions. Unfortunately all these approaches still lack
the dynamical character that gauge fields have in high-energy theory.

2.3 Towards dynamical gauge fields with cold atoms

The first requirement for a physical setup aiming to emulate a fully quantum (lattice) gauge
theory is quite clearly to treat bosons and fermions on an equal footing: this task is indeed well
accomplished by several experiments in ultracold atoms since many years [11 – 13]. The counter
requirement for high-energy problems is that they have to be formulated in a clear Hamiltonian
formalism, possibly with discrete degrees of freedom, in order to resemble as much as possible
the situation of cold atomic particles into an optical lattice. A first strategy is offered by Ref. [50],
where the low energy sector of interpenetrating 1D lattices loaded with bosons and fermions is
shown to display emergent Dirac fermions coupled to a dynamical scalar field, thus realising the
Gross-Neveu model. Another possibility is to use quantum link models [51 – 53], where the ele-
ments of the continuous gauge group are replaced by discrete quantum spins living on the lattice
links. This offers an alternative non-perturbative approach that deals with a quantum problem
rather than with a classical statistical mechanics one, like in the traditional Wilson formulation of
lattice gauge theories [54]. Moreover, these models are also relevant in condensed matter contexts,
like spin liquids and frustrated systems [55, 56]. A quite intense recent theoretical activity has
focused on working out fairly demanding optical-atomic tabletop experimental setups to emulate
U(1) quantum gauge theories, namely compact QED in different dimensionality [57 – 67]. Active
experiments are still to be scheduled in this direction, though the ideas are in principle all feasible.

The first generation of quantum emulators of gauge theories will, of course, not aim at solving
right away ultimate problems in QCD and not even at performing high-precision measurements
on other models. A profitable use of them will instead be to investigate some classically hardly
accessible regime, like real-time evolution and equilibration properties after quenches or phase
diagrams at high baryonic matter density [5, 51]. After a validation by comparison with a brute
force computation of small scale systems, the devices can be employed to highlight the presence
(or absence) and the character of specific phases or phenomena otherwise almost undecidable.
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The literature on the topic is vastly flourishing right now and many other working directions
may elude the simple partial lists presented here and in the previous section. For a nice vocabu-
lary translation between the two communities we address the reader to the other Colloquia in this
Workshop [68] and to a recent review by U. Wiese [51].

3. A tunable platform for relativistic fermions and axions

We revise here a proposal of an experimental scheme, pursuable with an increasing degree of
intricacy, aiming to realise a fermionic D-dimensional Hubbard Hamiltonian [17, 18]:

Hsys = ∑
r

∑
ττ ′

[
∑
ννν

tν c†
r+ννντ ′ [Uννν ]τ ′τcrτ +Ωc†

rτ ′ [Λ]τ ′τcrτ +H.c.
]

(3.1)

with tunneling strengths tν and hopping operators Uννν dependent on the nearest-neighbour direction
ννν , as well as on-site energy operators Λ with amplitude Ω. The dependence of both Uννν and Λ on
the ND internal degrees of freedom of the atoms, labeled by τ , is exploited to shape the dispersion
relation around the Fermi surface and to obtain an effective relativistic field theory, containing
different kind of fermions, from “naive” Dirac ones to “axion-like” particles. In Sec. 3.1 we expose
the sequence of steps from a theoretical point of view, while in Sec. 3.2 we substantiate these ideas
with details on the envisaged laser assisted schemes for cold atoms in optical lattices. Here we
deal only with the non-interacting quadratic part of the Hubbard Hamiltonian, since the atomic
interactions can then be set to zero via the cited Feshbach resonances [24].

3.1 General strategy towards relativistic lattice field theories

Let us start by denoting with αν ,β the Dirac matrices4, fulfilling a Clifford algebra, i.e.
{αν ,αµ} = 2δ νµ and {αν ,β} = 0, thus requiring ND = 2 for D = 1,2 and ND = 4 for D = 3.
By implementing translationally invariant U+ν = iαν and Λ = β , the Hamiltonian (3.1) becomes

H = ∑
k∈BZ

c̃†
k

(
∑
ν

2tν sinkναν +2Ωβ

)
c̃k , (3.2)

where c̃k are the field operators in momentum space (BZ being the Brillouin zone). A set of
ND = 2D isolated extremal points Kd = πd= (dxπ,dyπ,dzπ) (where dν ∈ {0,1}) can be identified:
their energy ε(Kd) = ±Ω becomes degenerate and exhibits Dirac cones for Ω = 0. Around them
we can define translated field operators Ψ(pd) = c̃Kd+pd

and thus reformulate Eq.(3.2) as

Heff = ∑
d

∑
pd

Ψ
†(pd)

[
cααα

d ·pd +mc2
β
]

Ψ(pd), (αααd)ν = (−1)dν αν . (3.3)

The quantum statistics forces then the low energy excitations of the cold atomic gas at half filling
to embody a relativistic field theory in terms of Dirac fermions, where the tiny Fermi velocity plays
the role of the speed of light, i.e. c = 2tx = 2ty = 2tz ' 5 ·10−6÷5 ·10−5 m/s, and the onsite energy
scale sets the effective mass mc2 = 2Ω. This path is usually dubbed as “naive” since it leads to an
even number of relativistic-fermion species, each located around a different Dirac point Kd.

4with respect to the notation of γ matrices, it holds αν = γ0γν and β = γ0
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In order to remove these spurious fermion doublers, a first solution is to synthesize the so-
called Wilson fermions by adding extra nearest-neighbour hoppings of the form Ũννν = −β . This
indeed induces a term −2t̃ν coskν β in Eq.(3.2) and results into:

Heff = ∑
d

∑
pd

Ψ
†(pd)

[
cααα

d ·pd +mKdc2
β
]

Ψ(pd), mKd = m−∑
ν

(−1)dν mν . (3.4)

By tuning the direction dependent mass shift mνc2 = 2t̃ν properly, i.e. ∑ν mν =m, a single massless
Dirac fermion survives at Kd = 0 and is therefore decoupled from all its doublers.

An alternative route is provided by “domain-wall” fermions, namely massless chiral Dirac
fermions bound to a lower-dimensional surface where the mass gets inverted, as introduced by
Kaplan [69]. The same happens on the boundaries of a finitely thick slab, inside which the Wilson
mass is tuned to be negative: as soon as the localisation length is much smaller than the slab
thickness, the two copies can be considered independent and thus circumventing the doubling issue.
Such strategy can be implemented within an ultracold atomic setup, e.g., by making the on-site
energy scale Ω space dependent, while keeping the hopping rates tν , t̃ν translationally invariant.

Finally, by controlling additional on-site terms Ω̃(iβγ5), we could even envisage a so-called
axion term, i.e. a complex Wilson mass of argument θ . When combined with (synthetic) electro-
magnetic gauge fields, this would introduce a term α̃(θ/2π)E ·B in the Hamiltonian density and a
set of modified Maxwell equations, ∇∇∇ ·E = ρ− α̃/2π ∇∇∇θ ·B and ∇∇∇×B = ∂tE+ j+ α̃/2π (∇∇∇θ ×
E+ ∂tθ B)5. These would lead to anomalous magneto-electric effects at the interface between
standard (θ = 0) and topological (θ = π) bulk regions, as in the integer quantum Hall effect and
other topological insulators [70 – 75]. In Ref. [17] we suggested to look by in-situ imaging for
fractional accumulation of atomic density to certify the presence of domain wall fermions in the
above introduced thick slab arrangement - i.e., to realize a sort of 3D fractional magnetic capacitor.

3.2 Some details on our Superlattice+Raman proposal

We consider a spin-independent optical potential6 V (x)=−V0 ∑ j∈D
[
cos2(qx j)+ξ cos2(2qx j)

]
,

formed by a principal laser beam with wavevector q = 2π/λL and a secondary one at double fre-
quency with relative intensity ξ ; the energy scale V0 (of order 100 KHz) is set by the laser power
and frequency, as sketched in Sec. 2.1. The resulting cubic array of main minima, r∈ (λL/2)ZD, is
taken as the simulation lattice7, while Wannier states localised in secondary minima on the middle
of each lattice link are employed as ancillary tools to realize the laser-assisted hoppings8. We focus
on fermionic alkali isotopes9 and identify a proper subset of ND hyperfine sub-levels |F,mF〉 with
the field components τ of Eq.(3.1), while a second hyperfine manifold F ′ at energy ' ∆HF serves
as a further ancilla. Such levels can be made individually addressable by exploiting the linear
Zeeman splitting they undergo in presence of a weak magnetic field10: EF,mF = +gF µB B mF and
EF ′,mF ′ = ∆HF−gF µB B mF ′ , with gF µB B easily of order 10÷50 MHz (see Fig. 1b-c).

5α̃ is an effective fine structure constant
6such a choice allows in principle for longer lifetimes, due to larger detuning and lower photon adsorption [29]
7the lattice spacing is of order 0.3-0.5 µm as dictated by optical frequencies of order 300-500Thz
8additional higher-order minima, not lying across lattice links, will not play any relevant role
9alkalis have only one external electron and thus an hyperfine structure similar to hydrogen

10the Landé factors are opposite for the two hyperfine manifolds, i.e. gF ′ =−gF
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a. c.

d. e. f.

b.

Figure 1: a. The basic principle of optical trapping, by considering only the electronic structure of the atom; some
typical numbers are quoted about the exploited energy hierarchy. b. The fine structure of an alkali atom, J = L+ S,
with S = 1/2 of the single electron. c. The hyperfine structure, F = I + J, with I the nuclear spin (e.g., I = 4 for the
fermionic 40K); the energy selection rule used in (d.; e.) is also depicted (B not parallel to the laser/lattice axes, thus
all three polarization involved, but only one coupling much more effective than others). d. The generation of on-site
matrix elements Λτ,τ ′ via microwave Raman couplings through the ancillary level in F ′. e. Same for the hopping matrix
[Uννν ]τ,τ ′ , this time needing a momentum transfer qt ‖ ννν and an ancilla in the intermediate minima between main lattice
sites. f. The further optical Raman scheme to generate the momentum and energy transfer needed in (e.). More details,
including further typical numbers and numerical checks of the adiabatic eliminations, can be found in Ref. [18].

We then suggest to freeze the natural tunnelling by raising V0 and to design a collection
of Raman couplings between the simulation sites/spins through the above introduced ancillary
states. These excited levels are then integrated out in a process called adiabatic elimination in
order to obtain the desired matrix element of the on-site (Λ) and nearest-neighbors (Uννν ) opera-
tors of Eq. (3.1). Some distinction is needed due to the form of the electromagnetic coupling
Ω̃τ2r2;τ1r1(t) = Sr2,r1 Ωτ2,τ1 e−iωt , where:

Ωτ2,τ1 is a function of the dipole matrix element and the polarization of the light;
Sr2,r1 contains the dependence on the center-of-mass degrees of freedom;
qt and ω are the transferred momentum and energy, respectively.

The factor Sr2,r1 is proportional to the overlap integral of the Wannier functions with the momentum
transferred by the photon, i.e. 〈wn2,r2 |e−iqt·x|wn1,r1〉, and is not zero only if 2π/|qt| is of the order
of the distance |r2−r1|. Due to the microwave nature of the hyperfine splitting (∆HF ' GHz), a di-
rect coupling of the levels would transfer a negligible momentum, sufficient to design only on-site
matrices Λ (Fig. 1d). In order to control hopping terms Uννν , we suggest to employ a further two-
photon Raman process involving an electronically excited manifold (100’s THz far away) allowing
for “optical kicks” comparable to the lattice spacing (Fig. 1e-f). The obtained synthetic hopping
will be then ruled essentially only by laser pairs aligned with the link direction. Furthermore, the
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use of coherent laser light for the Raman transitions entails the additional advantage of being able
to imprint complex-phases, ϕ = qt · (r1 + r2)/2, even if this would require to slightly violate the
just mentioned direction rule [39 – 44].

Let us stress that our scheme does not need the enforcement of polarization selection rules,
which would be problematic in D = 3. Besides the direction rule of overlap integrals, we suggest
to strongly profit of the favourable atomic energy hierarchy to create effective energy selection
rules [18]. For example, a magnetic field not aligned to any lattice axis would allow each photon to
produce all spin changes δmF = 0,±1 independently of the beam polarization: the above described
Zeeman splitting will then be sufficient to pinpoint which of these jumps is relevant (Fig. 1c). Such
energy-based rules, however, do not prevent spurious on-site spin-flipping: these can however be
compensated with the help of staggered lattices and microwave fields [40].

At this point we have introduced the main ingredients to individually tailor the matrix ele-
ments of the quadratic Hubbard operators in amplitude and phase, and direction dependence, as re-
quired to quantum simulate lattice field theories with the strategy of Sec. 3.1. By plugging realistic
numbers, we can foresee assisted tunnelling rates of order 100Hz, comparable to ongoing frontier
experiments. Temperature and entropy requirements to detect true ground state properties are sub-
tle and are currently attacked with huge efforts, the aim being the detection of anti-ferromagnetic
ordering of Hubbard models and its connection to high-Tc superconductivity [4, 76, 77]. Once a
strategy will be found, we are therefore confident that these requirements will be automatically at
reach also for a quantum simulator of lattice field theories as the one reviewed here. In Refs. [16 –
18] we checked numerically all the adiabatic eliminations against an exact time-evolution of the
full atomic-optical Hamiltonian on a link. We showed that a validity within errors (i.e., essentially
spurious couplings) of order few % can be achieved, even without a system dedicated optimization
that would be relevant only at the moment of actual experimental design. On the other hand, it
would be intrinsically interesting to see how robust is the phenomenology predicted by the ideal
lattice field theory, in presence of such unavoidable imperfections of a quantum simulator [10].

4. Conclusion

In this Colloquium we briefly reviewed the idea of quantum simulations of artificial gauge
potentials and fields by the use of ultracold atomic gases and quantum optics tools. The rapid and
impressive experimental progresses are making possible to foresee that in a not-too-far future cold-
atom experiments will be actively employed in the search for an answer to challenging theoretical
problems. This may even be true for open-questions related to static and dynamical gauge models,
as we have recently witnessed the realization of synthetic Abelian potentials in optical lattices [41 –
44], as well as the first non-Abelian ones in free-space [33, 35, 34]. We focused here on the design
of a flexible toolbox to reproduce lattice field theories and classical gauge fields, leaving the task
of quantum gauge theories to other Colloquia of this Workshop [68]. Quite interestingly, with the
help of the same setup, we could follow a dimensional reduction approach to realize most of the
instances of the celebrated periodic table of topological insulators [18].

Among the directions where an atomic-optical simulator can reveal its utility, we mentioned
the possibility of studying time-dependent non-equilibrium physics. In this respect, it is natural
to think at the periodic driving of the potentials in time and therefore at exploring the rich phe-
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nomenology of quenches and equilibration. With respect to our specific proposal, we might even
envision to combine the tailoring of the synthetic axion field with the controlled preparation and
release of matter-wavepackets [78] in order to synthesize some analogue of the “light behind the
wall” experiments [79]. This would indeed embody the spirit of what we dubbed as “bringing
abstract models into life” in the introduction of the quantum simulator rationale.

A further interesting perspective is to analyse the situation once interactions between the sim-
ulator constituents are no longer tuned to zero as assumed in the present manuscript. On one hand
they can be mapped to the relativistic language and exploited to realize truly dynamical gauge theo-
ries. The advantage will lie on dealing with finite densities of matter constituents without suffering
sign problems felt by classical computations [51]. On the other hand, an intense search is also
ongoing towards exotic fractionalization effects, in analogy to the fractional quantum Hall, with
the hope of outcomes on quantum computation [48].

Even if the exciting results we reviewed are calling attention of the entire scientific commu-
nity, we may be just starting to scratch an incredible world. If quantum simulators will hold their
promise, the sinergy between theoretical and experimental studies which has always boosted the
progress of physics will experience a novel era of joint efforts.
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