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We address several aspects of gluon propagation at zeroratedtémperature. In particular,
we study the violation of spectral positivity, we discussetiod to extract the Kallén-Lehmann
spectral density of a particle (be it elementary or bountéji@opagator and apply it to compute
gluon spectral densities from lattice data. Furthermoreaiso consider the interpretation of the
Landau gauge gluon propagator at finite temperature as avaégse bosonic propagator.
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1. Gluons at zero temperature

In recent years, the Landau gauge gluon propagator

DI (F) = &% (G - p‘;ﬁ”) D(p?) (1.1)
has been computed on the lattice, using volumes as lar¢@7an)* for the SU(2) gauge group
[1] and (17 fm)* for the SU(3) gauge group [2]. This was due to a renewed interest infilaeed
behaviour of the Landau gauge Yang-Mills propagators, in conneciithrtine gluon confinement
phenomenon. Simulations show that the propagators reach a finite rowxatee in the infrared
region. However, the lattice spacing used in the referred simulations vitashig being 022 fm
for SU(2) and 018 fm for SU(3). Despite the large physical volume, the use of such lattiee
spacings changes quantitatively the propagator in the infrared rediom[though we will not
discuss this effect here, it is an important bias, together with the Gribaeseffect [4, 5], that
should not be forgotten. We call the reader’s attention that, in what cositiee ghost propagator,
the combined effect of lattice spacing and physical volume was not investiga far for the SU(3)

gauge group.
1.1 Positivity violation of the gluon propagator as a sign of gluon confiement

It is a well accepted fact that the’-matrix of a non-Abelian gauge theory does not display
poles that would correspond to asymptotically observable degreeseafofre with the quantum
numbers of gluons (color charged vector particles). This is a simple emgaatdn the case of
QCD: we observe no free quarks or gluons, but we do observe,piw@sons etc.

The strong coupling makes it difficult to address with continuum tools the ssthe nonper-
turbatively realized QCD spectrum. Useful input can come from gaugd fattice simulations of
e.g. the quark and gluon propagator. In this proceeding, we will solelysfon pure glue dynamics
and ensuing (Euclidean) gluon propagation. From state-of-the-arelaiticulations [7, 8, 9, 10]
in the Landau gauge, a numerical estimate can be obtained for the so-ailemh@er function:

Ct) = /: SED(pZ)exp(—ipt). (1.2)

With some complex analysis tools, one can then @K to the Kallén-Lehmann spectral function
p(w?) of the gluon:

C(t):/ dwp(w?)e (1.3)
0

under theassumptiorthe gluon has a standard Kéllén-Lehmann representation of the form

D 2:/md LON 1.4

()= W o (1.4)

As p(u) has the meaning of a scattering probability, it ought to be positive in a physiitert
space. From the correspondence (1.3), it is then cleaCitashould be, at least, also positive.

The gluon Schwinger functio@(t) is depicted in Figure 1, clearly displaying a violation of
positivity, thence the gluon cannot be attributed a physical meaning. Tiisecaeen as evidence
in favour of gluon confinement, see also [11] for more detailed spectrahgsis

1For a SU(2) analysis see [6].
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Figure 1: Temporal correlator for the gluon propagator computedgi80t 8 = 6.0 lattice data.

1.2 Determination of the gluon spectral density from lattice data

The spectral density contains, amongst other things, information on thesnasphysical
states described by the operator

We now wish, given data input (with errors) for the propagator at afsdiscrete momenta,
to obtain a stable estimate for the spectral function. In general, this is aiowgnoblem. It
is interesting to notice that eq. (1.4) is equivalent to applying the Laplacsftram twice,D =
L?p =L L*p where(Zf)(t) = [ dse Stf(s). This is a notorious ill-posed problem. We used
=L

For positive spectral functions, the inversion can be achieved usinghéxénum entropy
method (MEM) [12]. Though, as the gluon Schwinger function alreadgais the spectral density
cannot be positive over its whole domain, the standard MEM procedeerdu apply. We will rely
on an alternative approach, preliminary discussed in [13, 14, 15] withra ownplete treatment
in [16]. We found inspiration in the Tikhonov approach to ill-posed problesnpplemented with
the Morozov discrepancy principle. Specifically, settiyg= D(p?) and assuming we hawé data
points, we minimized

N e o) _r e,
/A—;Mo cu i) 2 [ et (L5)

where we use lattice data in momentum space for the gluon propagator corirpat@d volume,

with B = 6.0 [3, 16]. The data was renormalized in a MOM schemg at4 GeV [3]. ForA =0,

we would be searching that that reproduces the data as close as possible in norm. Though, we
needA > 0 as a “screening filter” to overcome the ill-posed nature of the inversiois.amounts to
Tikhonov regularization in a discrete setting. The Morozov principle amouffitsttoe a priori free
parametel on that valuel whereby the quality of the inversion is equal to the error on the data,
i.e. ||Dreconstructed_ pdata)| — § whered is the total noise on the input data. We also introduced
an IR regulator (threshold)o into the game, the value thereof will be determined self-consistently
by means of the optimal (Morozov) regulatbr we took the minimal value fok (L) that can be
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Figure 2: The Morozov parameter in terms of the thresholg.

reached by varyinglp. This sounds natural: the smaller> 0 becomes the better we approach the
original (ill-posed) problem.

Perturbingo(u) linearly and demanding that the variation ¢fy vanishes, leads, after some
manipulation, to the following equation that we need to solvepfiqr).

Sy, Pev) ] 1 -
i;[/uo dvpi2+v_D'}pizﬂl*H\p(N)—o(HZHO) (1.6)

=G

Said otherwise, the (regularized) Kallén-Lehmann inverse is explicitlyndiye

N )
Palk) =3 3 o Bl o), a7

with 6(-) the Heaviside step function. Combination of egns. (1.6) & (1.7) yields a Isyesdiem to
be solved for the coefficients:

At ac+c=-D, (1.8)
with
o 2
M :/ dv = ftho (1.9)
Ve T PRHVPPHY PP

The reconstructed propagator, which dependa oran be directly expressed as follows:

’+ Lo
oo 1 N Giln 5
preconstructegt 12 :/ d Px (IJ) - _ = M' 1.10
) w TR A4 P (1.10)

The highest accessible lattice momenta repgsc= 7.77 GeV, a value that we will use here
as an UV cut-off. The number of lattice data points was 124 and the noideclaves asd =
0.658 GeV 2.

In Figure 2 we notice the occurrence of 2 minima AdiLo), at Lo ~ 0.03 Ge\? and g ~
0.16 Ge\?, with the former one giving a slightly lower value af For both values, the recon-
structed propagator and associated spectral density are shown ia Bigive clearly observe that
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(a) Spectral density. (b) Reconstructed propagator.

Figure 3: Results for the gluon spectral function and the reconsdipropagator vs. the input data. We
refer to the main text and [16] for additional details.

the gluon spectral density is indeed a nonpositive quantity. One can aigmace our estimate for
the gluon spectral function, based on lattice data, with the numerical odtpoitving the complex
momentum Dyson-Schwinger equations. With our current results, we tdeeacevidence of the
reported sharp peak of [20], while the violation of positivity sets in welbbefy ~ 600 MeV [20].

2. Gluons at finite temperature

In this section, we consider lattice results for the gluon propagator at fimiteet@ture. We
study positivity violation through the computation of the Schwinger and spédatrations, and
also consider the interpretation of the gluon propagator as a massiagaiop

The lattice setup for the simulations at finite temperature considered hereigddsn Table
1. For further details see [17].

2.1 Positivity violation and spectral densities

In this subsection, the temporal correlator defined in eq. (1.2) is computdteftongitudinal
and transverse components of the gluon propagator for the tempemdgsied in Table 1. The
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Figure 4: Temporal correlator for the longitudinal component.
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Temp. B Ls L a 1/a

(MeV) (fm)  (GeV)

121 6.0000 64 16 0.1016 1.9426
162 6.0000 64 12 0.1016 1.9426
194 6.0000 64 10 0.1016 1.9426
243 6.0000 64 8 0.1016 1.9426
260 6.0347 68 8 0.09502 2.0767
265 58876 52 6 0.1243 1.5881
275 6.0684 72 8 0.08974 2.1989
285 59266 56 6 0.1154 1.7103
290 6.1009 76 8 0.08502 2.3211
305 6.1326 80 8 0.08077 2.4432
324 6.0000 64 6 0.1016 1.9426
366 6.0684 72 6 0.08974 2.1989
397 5.8876 52 4 0.1243 1.5881
428 59266 56 4 0.1154 1.7103
458 59640 60 4 0.1077 1.8324
486 6.0000 64 4 0.1016 1.9426

Table 1: Lattice setup used for the computation of the gluon proagatfinite temperature. Simulations
used the Wilson gauge actiofi;was adjusted to have a constant physical volume,~ 6.5 fm. For the
generation of gauge configurations and Landau gauge fixiagisgd Chroma [18] and PFFT [19] libraries.
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Figure 5: Temporal correlator for the transverse component.
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Schwinger function for the longitudinal form factor, see Figure 4, anthfe transverse form factor,
see Figure 5, show that positivity is violated for both transverse and laligiucomponents at all
temperatures. From the results for the transverse propagator, wastettime scale for positivity
violation decreases with the temperature — see Figure 6. This suggest®tisatifitiently high
temperatures, transverse gluons can behave as quasi-particlesatinomberns the behaviour of
the time scale associated with the violation of positivity for the longitudinal prajeagvith the

temperature, the results are not so clear as for the transverse Schiumgjen.
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Figure 6: Positivity violation scale for the transverse propagator.
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Figure 7: Longitudinal propagator spectral densities.

The spectral densitiésissociated with the longitudinal gluon form factor can be seen in Fig-
ure 7. The spectral densify(u) is negative for largg: and the energy scale at which théu)
becomes negative seems to increase with temperature. This, again,tsulggefor sufficiently
high temperatures, longitudinal gluons may be considered as massivegttases.

2.2 Gluon mass

One can associate with the gluon propagator a mass scale. Here we cdifiédent defini-
tions for an electric (longitudinal) and magnetic (transverse) gluon maksasa function of the
temperature — see [17] for details.

2For another recent work concerning gluon spectral functions at feritgerature see [21].
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Figure 8: Z(T) andmy(T) from fitting the longitudinal gluon propagator to a Yukawarfo The curve in
the lower plot is the fit ofng to the functional form predicted by perturbation theory.

In a quasi-particle picture, the gluon is considered a massive boson witkeavg-type prop-

agator
Z

D(p):m,

wherem is the gluon mass and? the overlap between the gluon state and the quasi-particle
massive state.

A value for the gluon mass can be obtained fitting the infrared lattice data to2ehj. (n
Table 2 and in Figure 8 we report the functiahi§l ) andmy(T) associated with the longitudinal
component of the propagator. In what concerns the transversddotan, it turns out that it is not
described by a Yukawa-like function in the infrared region and onelades that the magnetic
propagator does not behave as a quasi-particle massive bosbrf600 MeV.

Another nonperturbative mass scale associated with gluon propagateathbe defined is
given by

(2.1)

m=1//D(p?=0;T). (2.2)

Such a mass scale is reported in Figure 9 for both electric and magnetic cemgodoreover, in
the right-hand plot we compare our data for the electric component with siitgeyiven in [22]
using the same renormalization condition.
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Temp. Pmax  Z(T) my(T) x?/d.o.f.
(MeV) (GeV) (GeV)

121  0.467 4.28(16) 0.468(13) 1.01
162 0570 4.252(89) 0.3695(73) 1.66
194  0.330 5.84(50) 0.381(22) 0.72
243  0.330 8.07(67) 0.374(21) 0.27
260 0271 873(86) 0.371(25) 0.03
265  0.332 7.34(45) 0.301(14) 1.03
275  0.635 3.294(65) 0.4386(83) 1.64
285 0542 3.12(12) 0.548(16) 0.76
290  0.690 2.705(50) 0.5095(85) 1.40
305 0.606 2.737(80) 0.5900(32) 1.30
324 0.870 2.168(24) 0.5656(63) 1.36
366 0716 2.242(55) 0.708(13) 1.80
397 0.896 2.058(34) 0.795(11) 1.03
428 1112 1.927(24) 0.8220(89) 1.30
458 0935 1.967(37) 0.905(13) 1.45
486  1.214 1.847(24) 0.9285(97) 1.55

Table 2: Results of fitting the longitudinal propagatdr (p?) to a Yukawa form fromp = 0 up to pmax.
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Figure 9: Electric and magnetic mass defined from zero momentum pedpiesy
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