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In this talk I am going to discuss a new approach to nonabelian gauge theories, which allows
to quantize them unambigously, provides a gauge invariant infrared regularization of these theories
and may lead to a possibility of finding solitons in the topologicaly nontrivial sectors of nonabelian
gauge theories.

Quantum Chromodynamics (QCD) is considered as theoretical basis of strong interaction
physics. No experimental facts contradicting QCD were discovered. At the same time from the
point of view of the theory QCD is far from being completed. A consistent theory of color con-
finement is absent. Even the quantization of nonabelian gauge fields beyond perturbation theory
strictly speaking does not exist .

1. A general scheme of the method.

Progress in physics was usually related to the introduction of new symmetries.
Recent examples are given by gauge theories. QED may be formulated in terms of the stress

tensor, depending only on the electric and magnetic fields, however much more transparent for-
mulation is presented by the quantization in a manifestly covariant gauge. But using a covariant
gauge we inevitably introduce unphysical excitations, corresponding to temporal and longitudinal
photons. Simultaneously the theory acquires a new symmetry, gauge invariance. This invariance
provides decoupling of unphysical excitations and guarantees unitarity of the scattering matrix in
the space of transversal photons. Yang-Mills theory became really popular only after its formula-
tion in the Lorentz covariant terms and explicit proof of its renormalizability. The gauge invariance
of the Higgs model allows to give a manifestly renormalizable theory describing a massive gauge
theory.

In this talk I wish to make a propaganda for a class of symmetries, which were introduced
in my paper rather long ago [1] , but recently were applied successfully to the nonperturbative
quantization of non-Abelian gauge theories, construction of the infrared regularization, applicable
beyond perturbation theory.

This symmetry is based on the equivalence theorems. It is well known that the physical content
of the theory does not change under canonical transformations. The same statement with some
reservations related to the renormalization properties is true also for point transformations ϕ =
ϕ ′+ f (ϕ ′)

One can also consider more general transformations, which contain explicitely the time deriva-
tives of the fields. Let us transform the fields as follows

ϕ =
∂ nϕ ′

∂ tn + f (
∂ n−1ϕ ′

∂ tn−1 , . . .
∂ϕ ′

∂ t
) = f̃ (ϕ ′) (1.1)

The spectrum is obviously changed under this transformation. New unphysical excitations appear.
The question about the unitarity of the transformed theory arises.

Some ideas about possible violations of unitarity by this transformation are given by the path
integral representation for the scattering matrix

S =
∫

exp{i
∫

L(ϕ)dx}dµ(ϕ); limt→±∞ϕ(x) = ϕout,in(x) (1.2)
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If the change (1.1) does not change the asymptotic conditions, then the only effect of such trans-
formation is the appearance of a nontrivial jacobian

L(ϕ)→ L̃(ϕ ′) = L[ϕ(ϕ ′)]+ c̄a δϕa

δϕ ′b cb (1.3)

For all new excitations one should take the vacuum boundary conditions.But it is by no means
obvious that such boundary conditions may be imposed. To answer this question we note that the
transformed lagrangian (1.3) is invariant with respect to a new symmetry

δϕ
′
a = caε

δca = 0; δ c̄a =
δL
δϕa

(ϕ ′)ε (1.4)

In these equations ε is a constant anticommuting parameter. On mass shell these transformations
are nilpotent and generate a conserved charge Q, belonging to the Grassmann algebra. In this case
there exists an invariant subspace of states annihilated by Q, which has a semidefinite norm. ([1]).
For asymptotic space this condition reduces to

Q0|φ >as= 0 (1.5)

The scattering matrix is unitary in the subspace which contains only excitations of the original
theory. However the theories described by the L and the L̃ are different, and only expectation
values of the gauge invariant operators coincide.

A very nontrivial generalization is obtained if one transforms the L̃ further shifting the fields
ϕ in the topologicaly trivial sector by constants. It is not an allowed change of variables in the
path integral as it changes the asymptotic of the fields. The unitarity of the "shifted" theory is not
guaranteed and a special proof (if possible) is needed.

Using this method one can construct a renormalizable formulation of nonabelian gauge theo-
ries free of ambiguity.

In fact it is not necessary to introduce higher derivatives. Necessary ingredients are new ghost
excitations, and new symmetry of the Lagrangian.

These ideas were successfully implemented in the papers ([2], [3], [4], [5]) A problem of
unambiguos quantization of nonabelian gauge theories beyond perturbation theory originates from
the classical theory: Even in classical theory the equation

DµFµν = 0 (1.6)

does not determine the Cauchi problem. To deal with gauge theory one has to impose the gauge
condition, selecting a unique representative in a gauge equivalent class.

Differential gauge conditions: L(Aµ ,ϕ) = 0 → which contains a differential operator as we
shall see lead to appearance of Gribov ambiguity. One can try to avoid this problem by applying
so called algebraic gauge conditions: L̃(Aµ ,ϕ) = 0. The most known condition of this kind is so
called Hamiltonian gauge A0 = 0. However these gauges also lead to problems. From practical
point of view the most important problem is the absence of a manifest Lorentz invariance.

Let us consider the problem of ambiguity for the case of Coulomb gauge. To answer the ques-
tion about ambiguity in the choice of a representative in the class of gauge invariant configurations
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in the case of the Coulomb gauge, we must consider a possibility of existence of several solutions
of the equation ∂iAi = 0.

∂iAi = 0

A′i = (AΩ)i

4α
a + igε

abc
∂i(Ab

i α
c) = 0 (1.7)

The last equation has nontrivial solutions rapidly decreasing at spatial infinity, therefore the Cou-
lomb gauge does not select a unique representative among gauge equivalent configurations. This
fact was firstly noticed by V.N.Gribov [6] and later generalized by I.Singer [7] to arbitrary gauge.
I wish to emphasize that in perturbation theory the only solution of the (eq.1.7)is α = 0. So in
perturbation theory the problem of ambiguity is absent. There are two possibilities to solve the
problem of ambiguity :

1. Use of this phenomenon to try to explain confinement e.t.c. (Series of works by D.Zwanzi-
ger [8] and others.)

2.To avoid the Gribov problem by using new (equivalent) formulation of the Yang-Mills theory
using more ghost fields. In the following I consider in more details the second option.

2. Formulation of the Yang-Mills theory free of Gribov ambiguity

Let us consider the classical (SU(2))Lagrangian

L =−1
4

Fa
µνFa

µν −m−2(D2
φ̃)∗(D2

φ̃)+(Dµe)∗(Dµb)+(Dµb)∗(Dµe)

+α
2(Dµ φ̃)∗(Dµ φ̃)−α

2m2(b∗e+ e∗b) (2.1)

where φ is a two component complex doublet, and

φ̃ = φ − µ̂; µ̂ = (0,µ
√

2g−1) (2.2)

µ is an arbitrary constant. Dµ denotes the usual covariant derivative. To save the place we consider
here the group SU(2).

In the following we shall use the parametrization of φ in terms of Hermitean components

φ = (
iφ 1 +φ 2
√

2
(1+

g
2µ

φ
0),

φ 0− iφ 3(1+g/(2µ)φ 0)√
2

) (2.3)

The complex anticommuting scalar fields b,e will be parameterized as follows

b = (
ib1 +b2
√

2
,
b0− ib3
√

2
)(1+

g
2µ

φ
0)

e = (
ie1 + e2
√

2
,

e3
√

2
) (2.4)

where the components eα are Hermitean, and bα are antihermitean. This particular parametrization
of the classical fields is used as we want to get rid off the ambiguity in choosing the gauge for
quantization completely.
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In this parametrization the Lagrangian (2.1) is invariant with respect to "shifted" gauge trans-
formations

Aa
µ → Aa

µ +∂µη
a−gε

abcAb
µη

c

φ
a → φ

a +
g2

4µ
φ

a
φ

b
η

b + µη
a

φ
0 → φ

0− g
2

φ
a
η

a(1+
g
2

φ
0)

ba → ba +
g
2

ε
abcbb

η
c +

g
2

b0
η

a +
g2

4µ
ba

φ
b
η

b

ea → ea +
g
2

ε
abceb

η
c +

g
2

e0
η

a

b0 → b0− g
2

ba
η

a +
g2

4µ
(φ a

η
a)

e0 → e0− g
2

ea
η

a. (2.5)

The field φ a is shifted by an arbitrary function, therefore one can put φ a = 0. Contrary to the
common wisdom this gauge is algebraic, but Lorentz invariant. It may be used beyond perturbation
theory as well.

This Lagrangian is also invariant with respect to the supersymmetry transformations

φ → φ −bε

e → e− D2(φ − µ̂)
m2 ε

b → b (2.6)

where ε is a constant Hermitean anticommuting parameter. This symmetry plays a crucial role
in the proof of decoupling of unphysical excitations. It holds for any α , but for α = 0 these
transformations are also nilpotent.

Note that for further discussion we need only the existence of the conserved charge Q and
nilpotency of the asymptotic charge Q0, as the physical spectrum is determined by the asymptotic
dynamics. In the case under consideration the nilpotency of the asymptotic charge requires α = 0,
and the massive theory with α 6= 0 is gauge invariant but not unitary. It may seem strange as
usually the gauge invariance is a sufficient condition of unitarity, because one can pass freely from
a renormalizable gauge to the unitary one, where the spectrum includes only physical excitations.
In the present case there is no "unitary" gauge. Even in the gauge φ a = 0, there are unphysical
excitations.

For gauge transformations (2.5) the gauge φ a = 0 is admissible both in perturbation theory and
beyond it. Indeed, if φ a = 0, then under the gauge transformations (2.5) the variables φ a become

δφ
a = µη

a (2.7)

and the condition φ a = 0 implies that ηa = 0. It is also obvious that for α 6= 0 the Lagrangian (2.1)
describes a massive vector field and does not produce infrared singularities.

5



P
o
S
(
Q
C
D
-
T
N
T
-
I
I
I
)
0
4
1

Gauge fields A.A.Slavnov

In terms of shifted variables the Lagrangian (2.1) looks as follows

L =−1
4

Fa
µνFa

µν −m−2(D2
φ)∗(D2

φ)+m−2(D2
φ)∗(D2

µ̂)

+m−2(D2
µ̂)∗(D2

φ)−m−2(D2
µ̂)∗(D2

µ̂)+(Dµe)∗(Dµb)

+(Dµb)∗(Dµe)+α
2(Dµφ)∗(Dµφ)−α

2(Dµφ)∗(Dµ µ̂)

−α
2(Dµ µ̂)∗(Dµφ)+α

2(Dµ µ̂)∗(Dµ µ̂)−α
2m2(b∗e+ e∗b) (2.8)

The shift of the variables φ produces the term

α
2(Dµ µ̂)∗(Dµ µ̂) =

α2µ2

2
A2

µ (2.9)

which gives a mass to the vector field. The term

m−2(D2
µ̂)∗(D2

µ̂) =
µ2

2m2 [(∂µAµ)2 +
g2

2
(A2)2] (2.10)

makes the theory renormalizable for any α . To avoid complications due to the presence of the
Yang-Mills dipole ghosts at α = 0 we put µ2 = m2.

Invariance of the Lagrangian (2.8) with respect to the gauge transformation (2.5) and the su-
persymmetry transformations (2.6) makes the effective Lagrangian invariant with respect to the si-
multaneous BRST transformations corresponding to (2.5) and the supersymmetry transformations
(2.6). The effective Lagrangian may be written in the form

Le f = L+ s1c̄a
φ

a = L(x)+λ
a
φ

a− c̄a(µca−ba) (2.11)

One can integrate over c̄,c in the path integral determining expectation value of any operator cor-
responding to observable. It leads to the change ca = baµ−1. After such integration the effective
Lagrangian becomes invariant with respect to the transformations which are the sum of the BRST
transformations and the supersymmetry transformations (2.6) with ca = baµ−1. These transforma-
tions look as follows

δAa
µ = Dµba

µ
−1

ε

δφ
a = 0

δφ
0 =−b0(1+

g
2µ

φ
0)ε

δea = (
g

2µ
ε

abcebbc +
ge0ba

2µ
+ i

D2(φ̃)a

µ2 )ε

δe0 = (−geaba

2µ
− D2(φ̃)0

µ2 )ε

δba =
g

2µ
ε

abcbbbc

δb0 = 0 (2.12)

For the asymptotic theory these transformations acquire the form

δAa
µ = ∂µba

µ
−1

ε
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δφ
a = 0

δφ
0 =−b0

ε

δea = ∂µAa
µ µ

−1

δe0 =−∂
2
φ

0
µ
−2

δba = 0

δb0 = 0. (2.13)

According to the Neuther theorem the invariance with respect to the supertransformations
mentioned above generates a conserved charge Q, and the physical asymptotic states may be chosen
to satisfy the equation

Q̂0|ψ >as= 0 (2.14)

Q0 =
∫

d3x[(∂0Aa
i −∂iAa

0)µ
−1

∂iba−µ
−1

∂νAa
ν∂0ba + µ

−2
∂

2(∂0φ
0)b0−

µ
−2

∂0b0
∂

2(φ 0−µα
2baAa

0] (2.15)

Due to the conservation of the Neuther charge this condition is invariant with respect to dynamics.
It was proven in the paper [9] that this symmetry guarantees the decoupling of all unphysical ex-
citations at α = 0 and the transitions between the states, annihilated by the charge Q include only
three dimensionally transversal components of the Yang-Mills field. Therefore we succeeded to
formulate the Yang-Mills theory in such a way that in a topologically trivial sector Gribov ambigu-
ity is absent and the infrared regularization valid beyond perturbation theory is easily constructed.
This approach opens also interesting possibilities to consider topologically nontrivial sectors and
study the confinement problem.

Discussion

A renormalizable manifestly Lorentz invariant formulation of the non-Abelian gauge theo-
ries which allows a canonical quantization without Gribov ambiguity (including Higgs model) is
possible.

In perturbation theory the scattering matrix and the gauge invariant correlators coincide with
the standard ones.

On the basis of this approach infrared regularization of Yang-Mills theory beyond perturbation
theory is constructed [9]

This approach seems to be appropriate for a study of existence of soliton excitations in Yang-
Mills theory. This problem is under consideration.
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