PROCEEDINGS

OF SCIENCE

Analytical relation between confinement and chiral
symmetry breaking in terms of Polyakov loop and
Dirac eigenmodes in odd-number lattice QCD

Hideo Suganuma * Takahiro M. Doi

Department of Physics & Division of Physics and Astronomy, Graduate School of Science,
Kyoto University, Kitashirakawaoiwake, Sakyo, Kyoto 606-8502, Japan

E-mail: suganuma@scphys.kyofo-u.ac.|p |

Takumi Iritani

High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan

In lattice QCD formalism, we derive an analytical gauge-invariant relation between the Polyakov
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formula is a Dirac spectral representation of the Polyakov loop in terms of Dirac eigeninpdes

We here use an ordinary square lattice with the normal (nontwisted) periodic boundary condition
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to the Polyakov loop, i.e., the Polyakov loop is almost unchanged even by removing low-lying
Dirac-mode contribution from the QCD vacuum generated by lattice QCD simulations. Thus, we
conclude that low-lying Dirac modes are not essential modes for confinement, which indicates no
direct one-to-one correspondence between confinement and chiral symmetry breaking in QCD.
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1. Introduction: Are color confinement and CSB one-to-one in QCD?

Quantum chromodynamics (QCD) has two outstanding nonperturbative phenomena of color
confinement and spontaneous chiral-symmetry breakihin[the low-energy region, and their
derivation is one of the most important problems in theoretical physics. For quark confinement, the
Polyakov loop(Lp) is a typical order parameter, and relates to the single-quark free eBgiy
(Lp) O e B/T at temperaturd. (Lp) is also an order parameter &f_ center symmetry in QCD
[@. For chiral symmetry breaking, the standard order parameter is the chiral cond@mpatnd
low-lying Dirac modes play the essential role, as the Banks-Casher re@immlicates.

The relation between confinement and chiral symmetry breaking is also one of the important
physical issuedq B, 6, [@ B @ [T 7], and there are several circumstantial evidence on their
correlation. For example, lattice QCD simulations have shown almaost coincidence between decon-
finement and chiral-restoration temperatu@4IQ], although slight difference of about 25MeV
between them is pointed out in some recent lattice QCD stUf@i@sTheir correlation is also sug-
gested in terms of QCD-monopoldd [f], which topologically appear in QCD in the maximally
Abelian gaugeI4, [I5 [16 17 [17), leading to the dual-superconductor pictUf&][ Actually, by
removing the monopoles from the QCD vacuum generated in lattice QCD, confinement and chiral
symmetry breaking are simultaneously It ps schematically shown in Fig.1. This fact indicates
an important role of monopoles to both confinement and chiral symmetry breaking, and thus these
two phenomena seem to be related via the monopole. However, in spite of the essential role of
monopoles, the direct relation of confinement and chiral symmetry breaking is still unclear.

Monopole
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Hodge Co.nfinement s .

X | decomposition Chiral Sym Breaking,
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Figure 1: The role of monopoles to nonperturbative QCD. In the MA gauge, QCD becomes Abelian-like
due to the large off-diagonal gluon mass of about 1d&¥, [and monopole current topologically appears
[14 I5. By the Hodge decomposition, the QCD system can be divided into the monopole part and the
photon part. The monopole part has confinem@g}, [chiral symmetry breakindg and instantondTg],

while the photon part does not have all of them, as shown in lattice QCD. In spite of the essential role of
monopoles, the direct relation of confinement and chiral symmetry breaking is still unclear.

Then, we have a questiolf.only the relevant ingredient of chiral symmetry breaking is care-
fully removed from the QCD vacuum, how will be quark confinement?

To obtain the answer, in this paper, we derive an analytical relation between the Polyakov loop
and the Dirac modes in temporally odd-number lattice QCD, where the temporal lattice size is odd,
and discuss the relation between confinement and chiral symmetry breaking.
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2. Lattice QCD formalism for Dirac operator, Dirac eigenvalues and Dirac modes

First, we clarify the mathematical condition of lattice QCD formalism adopted in this study
[0 [@J. We use an ordinary Euclidean square lattice with spaaiagd sizeV = N3 x N;. The
normal (nontwisted) periodic boundary condition is used for the link-varidple) = €294( in
the temporal direction, which is physically required at finite temperatures. We talé.)5hH the
gauge group, although any gauge gr@pan be taken for most arguments in this paper.

Note that, in our studies, we just consider the mathematical expansion by eigenmoades
the Dirac operatol = y,,Dy, using the completeness §f, |n)(n| = 1. In general, instead db,
one can consider any (anti)hermitian operator, ©§ = Dy Dy, and the expansion in terms of its
eigenmoded{]. In this paper, to consider chiral symmetry breaking, we afiopnd the expansion
by its eigenmodes.

In lattice QCD, the Dirac operat@® = y,,D,, is expressed withl,(s) = €39 () as

1 4
Dss = %uzl Vi [Up(9)3sips —U—_pn(8) ps] (2.1)

withU_,(s) = UJ(S— [1) and lattice unit vectofi. Taking hermitiary, = yZ, the Dirac operatdp
is anti-hermitian and satisfi&], .= — Bss. We introduce the normalized Dirac eigen-stateas

B|n)y =iAp|n), (m[n) = &mn, (2.2)

with the Dirac eigenvalug\,, (A, € R). Because of y5,[3} = 0, the states|n) is also an eigen-state
of D with the eigenvalue-iA,. Here, the Dirac eigen-stape) satisfies the completeness of

z [n)(n| = 1. (2.3)
The Dirac eigenfunctio,(s) = (s|n) satisfieddyn(s) = iAnn(9), i.e.,
4
o S VulUu(S)Yn(s-+ ) —U-y (S 9(5— 0] = PAih(9). (2.4)
u=1

By the gauge transformation o, (s) — V(s)U,(S)VT(s+ f1), Yn(s) is gauge-transformed as

Un(s) = V(S)¢n(s), (2.5)

which is the same as that of the quark field. (To be strict, there can appear an irraleegrendent
global phase facta# V], according to arbitrariness of the phase in the basifg].)
The spectral densitp(A) of the Dirac operatol relates to chiral symmetry breaking, e.g.,
the zero-eigenvalue density0) leads to{qq) (Banks-Casher’s relatiorB]. In fact, the low-lying
Dirac modes are regarded as the essential modes responsible to chiral symmetry breaking in QCD.
Here, we take the operator formalism in lattice Q@Dg, @) by introducing the link-variable
operatorljiu defined by the matrix element of

<S’0iu|sl> =Usu(S)stpis- (2.6)
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With the link-variable operator, the Dirac operator and covariant derivative are simply expressed as

1 2 1 o~ .

%a > yuUu—U_p),  Dy= %(Uu —U_p). (2.7)
u=1

D=

The Polyakov loop is also simply written as the functional tradéz'l&f i.e.,(Lp) = ,\J%V<Trc{04'1\lt b,
where “Tr” denotes the functional trace of (T 3 str¢ including the trace grover color index. For
large volumeV, one can exped{O) ~ Tr O/Tr 1 for any operatoO at each gauge configuration.
The Dirac-mode matrix element of the link-variable opera]prcan be expressed with,(s) as
(mlUpIn) = S (mis)(s)0u[s+ 1) (s+ ) = ¥ h(S)Up(S)n(s+ ), (2.8)
S

S

which is gauge invariant, because @ff), apart from an irrelevant global phase faci@ [

3. Previous numerical study: Dirac-mode expansion and Dirac-mode projection

We here review our previous studigg B, [ on “Dirac-mode expansion”, “Dirac-mode pro-
jection” where the Dirac-mode space is restricted, and the role of low-lying Dirac modes to con-
finement in SU(3) lattice QCD.

From the completeness of the Dirac-mode bagjgn) (n| = 1, arbitrary operato® can be
expanded in terms of the Dirac-mode basisasO = S, |n)(n|O|m)(m|. With this relation,
we consider the Dirac-mode expansion and Dirac-mode projection. We define the projection op-
eratorP = S nea [N (N|, which restricts the Dirac-mode space to its arbitrary subsdising the
projection operatoP, we define the Dirac-mode projected link-variable oper&tgr= PU,P =
Y mea Snea M (M[Uy [n)(n|, the Dirac-mode projected Wilson-loop operaWf = [}_, U}, the
Dirac-mode projected inter-quark potendédl(R) = — limt_, %In(TrC WP(R T)) fromtheRx T
rectangular Wilson loop, and the Dirac-mode projected Polyakov {bepoj. = N%,(TrC (UM,

In Refs.[A 8], we use SU(3) quenched lattice QCDBat 5.6 (i.e.,a~ 0.25fm) on &, and take
the IR-cutoffA|gr = 0.5a~1 ~ 0.4GeV for the Dirac modes, which leads an extreme reduction of the
chiral condensate agig)a,/(qq) ~ 0.02 for the current quark mass~ 5MeV. Figure 2 shows
the IR-Dirac-mode-cut Wilson loofTrcWP (R, T)), the IR-cut inter-quark potenti®l®(R), and the
IR-Dirac-mode-cut Polyakov l0oflp)r-cut, after the removal of the low-lying Dirac modes.

Remarkably, even after removing the coupling to the low-lying Dirac modes, the IR-Dirac-
mode-cut Wilson loop obeys the area lawé& (R T)) D e 9 RT, and the slope®, i.e., the string
tension, is almost unchanged @8 ~ 0. As shown in Fig.2(b), the IR-cut inter-quark potential
VP(R) is almost unchanged from the original one, apart from an irrelevant constant. Also from
Fig.2(c), we find that the IR-Dirac-mode-cut Polyakov loop is almost zgr®),r-cut =~ 0, which
meansZz-unbroken confinement phase. In this way, confinement is kept even in the absence of
low-lying Dirac modes or the essence of chiral symmetry breakdiig, [9].

We also investigate the UV-cut of Dirac modes in lattice QCD, and find that the confining force
is almost unchanged by the UV-c@ B [@]. Furthermore, we examine “intermediate(IM)-cut” of
Dirac modes, and obtain almost the same confining f&aAdg] [

From these lattice QCD results, there is no specific region of the Dirac modes responsible to
confinement. In other words, we conjecture that the “seed” of confinement is distributed not only
in low-lying Dirac modes but also in a wider region of the Dirac-mode space.
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Figure 2: Lattice QCD resultd]} [§] after the removal of low-lying Dirac modes below the IR-cuthfk =

0.5a1 ~ 0.4GeV. (a) The IR-cut Wilson loopiTrc WP (R, T)) (circle) plotted againsR x T. The slopes®

is almost the same as that of the original Wilson loop (square). (b) The IR-cut inter-quark patEgRal
(circle). VP(R) is almost unchanged from the original one (square), apart from an irrelevant constant. (c) The
scatter plot of the IR-cut Polyakov lodpp)r-cut- {Lp)ir-cut~ O mean<Zz-unbroken confinement phase.

4. Analytical relation of the Polyakov loop and Dirac modes in oddN; lattice QCD

Now, we consider temporally odd-number lattice QCD, where the temporal latticeNsize
is odd [IQ [I7]. Here, we use an ordinary square lattice with the normal (nontwisted) periodic
boundary condition for link-variabléd,, (s) in the temporal direction. The spatial lattice siegis
taken to be larger tha;, i.e.,Ns > N;. Note that, in the continuum limit g — 0 andN; — oo, any
large numbeN; gives the same physical result. Then, to use the odd-number lattice is no problem.

N, =3 case Polyakov loop
0 0
N
0 O Closed Loops

Figure 3: An example of the temporally odd-number lattidé¢ & 3 case). Only gauge-invariant quantities
such as closed loops and the Polyakov loop survive in QCD, after taking the expectation value, i.e., the
gauge-configuration average. Geometrically, closed loops have even-number links on the square lattice.

As a general mathematical argument of the Elitzur theoBnoply gauge-invariant quantities
such as closed loops and the Polyakov loop survive in QCD. In fact, all the non-closed lines are
gauge-variant and their expectation values are zero. Note here that any closed loop needs even-
number link-variables on the square lattice, except for the Polyakov[[@p(See Fig.3.)

In temporally odd-number lattice QCQ{, [I7], we consider the functional trace of

~ ~AN—1
I = TrC,V(U4D )a (41)
where Tg, = S strctry, includes tg and the trace frover spinor index. Its expectation value
~ AN—1
(1) = (Trey(Ual™ 7)) (4.2)

is obtained as the gauge-configuration average in lattice QCD. When the wdlisemough large,
one can expegiO) ~ Tr O/Tr 1 for any operato© even in each gauge configuration.
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From EqIZ7), Us DM can be expressed as a sum of products;dink-variable operators,
since the Dirac operatdd includes one link-variable operator in each directiontgf. In fact,
U, D™ 1 includes “many trajectories” with the total length (in lattice unit) on the square lattice,
as shown in Fig.4. Note that all the trajectories with the odd-number |&ygtannot form a closed
loop on the square lattice, and give gauge-variant contribution, except for the PolyakofThop [

N; =3 case
O O O
O O )

Gauge-variant

Figure 4. Partial examples of the trajectories stemming fro'm,y(04 1?)'\"*1)>. For each trajectory, the

total length isN;, and the “first step” is positive temporal direction correspondinidoAll the trajectories

with the odd-number lengti; cannot form a closed loop on the square lattice, so that they are gauge-variant
and give no contribution ifTrc ,(Us BN1)), except for the Polyakov loop.

Hence, among the trajectories stemming fr@'ﬁhy(ll; @M*1)>, all the non-loop trajectories
are gauge-variant and give no contribution, according to the Elitzur the@je@rly the exception
is the Polyakov loop. (Compare Figs.4 and 5.) Note (Fragyy(ll; BN-1)) does not include the
anti-Polyakov Ioop(L,T3>, since the “first step” is positive temporal direction correspondiriguto

Thus, in the functional tracél) = (Tr (U, BN1)), only the Polyakov-loop ingredient can
survive as the gauge-invariant quantity, dhdis proportional to the Polyakov loofbp).

Polyakov loop

O N, =3 case
A

Gauge-invariant

Figure 5: Among the trajectories stemming froﬁﬁrc,y(04 N-1)), only the Polyakov-loop ingredient can
survive as the gauge-invariant quantity. Owing to the first faaﬁol(Trc,y(LAJ4 M-1)) does not includéLL).

Actually, we can mathematically derive the following relatifjf

A AN—1
() = (Trey(Usl ™ 7))
= (Trey{Ua(yaDa)™"1}) (. only gauge-invariant terms survive
= A(Tre(UsDY ) oyt t=1trl=4)
4 o a1
= W<ch{U4(U4—U—4)N‘ D (7 Da=o_(Us=U.4))
= L(Tr {UNy = &@ ). (.~ only gauge-invariant terms survive (4.3)
~ a1 e ) = Rt ibe) L ony gag '
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We thus obtain the relation betwedén = <Trc7y(04[§)Nt_l)) and the Polyakov loofLp),

(1) = (e 0™ ) = s Lo (4.9)

On the other hand, we calculate the functional trace inZg).sing the complete set of the
Dirac-mode basif) satisfyingy ,|n)(n| = 1, and find the Dirac-mode representation of

(1) =" (njUs B Hn) =N S AN (n[Ua|n). (4.5)

Combing Eqsi4.4) and B.9), we obtain the analytical relation between the Polyakov lagp and
the Dirac eigenvalues\, [IJ in QCD:

(2ai)N—1

e =y

S ANYn|0aln). (4.6)
n
This is a direct relation between the Polyakov Idbp) and the Dirac modes in QCD, i.e., a “Dirac
spectral representation of the Polyakov loop”, and is mathematically valid on the temporally odd-
number lattice in both confined and deconfined phases. Based &h@rqwe can investigate
each Dirac-mode contribution to the Polyakov loop individually, e.g., by evaluating each contri-
bution specified byr numerically in lattice QCD. In particular, by paying attention to low-lying
Dirac modes in EJ4.9), the relation between confinement and chiral symmetry breaking can be
discussed in QCD.

As a remarkable fact, because of the fao\gi?'r‘l, the contribution from low-lying Dirac-
modes with|Ay| >~ 0 is negligibly small in the Dirac spectral sum of RHS in Egg[, compared
to the other Dirac-mode contribution. In fact, the low-lying Dirac modes have little contribution to
the Polyakov loop, regardless of confined or deconfined pA&B&T]. (This result agrees with the
previous numerical lattice results that confinement properties are almost unchanged by removing
low-lying Dirac modes from the QCD vacuuii [8,[@].) Thus, we conclude from the relatidd.f)
that low-lying Dirac modes are not essential modes for confinement, which indicates no direct
one-to-one correspondence between confinement and chiral symmetry breaking in QCD.

Here, we give several comments on the relati@@)(in order.

1. Equation[L8) is a manifestly gauge-invariant relation. Actually, the matrix elenfejui|n)
can be expressed with the Dirac eigenfunctigiis) and the temporal link-variabld,(s) as

(n|U4|n) = Z<n]s}<s]U4]s+t (s+fn) = an S)Yn(s+1), (4.7)
S
and each terngf (s)U4(s) Yn(s+f) is manifestly gauge invariant, because of the gauge trans-
formation propertylZ.5). [Global phase factors also cancel exactly betw@gand|n).]

2. In RHS of EqA.8), there is no cancellation between chiral-pair Dirac eigen-statesnd
y5|n), becauséN; — 1) is even, i.e.[—An)N "t = AN-1 and(n|ysUsys|n) = (n|Ug|n).

3. Even in the presence of a possible multiplicative renormalization factor for the Polyakov
loop, the contribution from the low-lying Dirac modes (or the sni|| region) is relatively
negligible, compared to other Dirac-mode contribution in the sum of RHS i@, (
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4. For the arbitrary color numbé\;, Eq.[4.9) is true and applicable in the SN{) gauge theory.

5. If RHS in Eq.A.8) werenot a sum but a product, low-lying Dirac modes should have given
an important contribution to the Polyakov loop as a crucial reduction factyftof. In the
sum, however, the contributiol](A 1) from the smallA,| region is negligible.

6. Even if (n|U4|n) behaves as th&-function 5(A ), the factorAM—1 is still crucial in RHS of
Eq.@.9), because oAd(A) =0

7. The relation[f.§) is correct regardless of presence or absence of dynamical quarks, although
dynamical quark effects appear(iop), the Dirac eigenvalue distributig(A ) and(n|Ug4|n).

8. The relation[@.§) is correct also at finite baryon density and finite temperature.

9. Equation[L.6) obtained on the odd-number lattice is correct in the continuum limat-ef0
andN; — o, since any number of largé gives the same physical result.

Note that most of the above arguments can be numerically confirmed by lattice QCD calcus
lations. Using actual lattice QCD calculations at the quenched level, we numerically confirm the
analytical relationd.8), non-zero finiteness afn|Ua|n) for each Dirac mode, and the negligibly
small contribution of low-lying Dirac modes to the Polyakov loop, in both confined and deconfined
phases[I{ [I7], as will be shown in Sec.5. Although we numerically find an interesting drastic
change of the behavior dh|U,|n) between confined and deconfined phases, we find also quite
small contribution of low-lying Dirac modes to the Polyakov loop.

5. Modified KS formalism for temporally odd-number lattice

The Dirac operato has a large dimension ¢4 x N x V)2, and hence the numerical cost for
solving the Dirac eigenvalue equation is quite huge. This numerical cost can be partially reduced
using the Kogut-Susskind (KS) formalisf@, B [11, 2. However, the original KS formalism can
be applied only to the “even lattice” where all the lattice silkigsare even number. In this section,
we modify the KS formalism to be applicable to the odd-number laffidg Using the “modified
KS formalism”, we can reduce the numerical cost in the case of the temporally odd-number lattice.

In the original KS formalism for even lattices, using the maffifs) = y;*525°y;", all the
y-matrices can be diagonalized BY(s) )YuT (S£[1) = nu(s)1, wheren,(s) is the staggered phase,
ni(s) =1, nu(s) = (—1)St %1 (u> 2). Then, the Dirac operatdd is spin-diagonalized as

ZT S)YuDuT (s+ 1) = diag(nuDy, NuDy, NuDyu; NuDy), (5.1)

wheren, D, is the KS Dirac operator given by

(NuDy)s¢ 2 Z Nu(s (S)0sts — (5)6571‘1,5’] . (5.2)

Equation [B.]) shows fourfold degeneracy of the Dirac eigenvalue relating to the spiror structure,
and then all the eigenvaluék, are obtained by solving the reduced Dirac eigenvalue equation

NuDy|n) =iAq|n). (5.3)
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Using the eigenfunctioin(s) = (s|n) of the KS Dirac operator, the explicit form of HE.H reads
1 2 . SO
%a z Nu(X) U (X) Xn(X+ [) —U_p(X) Xn(X— {1)] = iAnXn(X), (5.4)
u=1

where the relation between the Dirac eigenfunctjg(s) and the spinless eigenfunctign(s) is

Yn(S) = T(S)Xn(S)- (5.5)

Note here that the original KS formalism is applicable only to even lattices in the presence of
the periodic boundary conditiod]]. In fact, the periodic boundary condition requires

T(S+ NNI:)) = T(S) (IJ = 1727374)7 (56)

however, it is satisfied only on even lattices. Note also that, while the spatial boundary condition
can be changed arbitrary, the temporal periodic boundary condition physically appears and can-
not be changed at finite temperatures. Thus, the original KS formalism cannot be applied on the
temporally odd-number lattice.

Now, we consider the temporally odd-number lattice, with all the spatial lattice size being
even. Instead of the matrik(s), we introduce a new matrif[l]

M(s) = B3y ™, (5.7)

where the exponent of, differs fromT(s). As a remarkable feature, the requirement from the
periodic boundary condition is satisfied on the temporally odd-number |diffi}e [

M(s+Nyfl) =M(s) (1 =1,2,3,4). (5.8)

Using the matriXM(s), all the y-matrices are transformed to be proportionay4o
MY (9)yuM (s 1) = Nu(s)ya, (5.9)

wheren,(x) is the staggered phase. In the Dirac representagids,diagonal as
ya =diag(1,1,—1,—1) (Dirac representation (5.10)

and we take the Dirac representation. Thus, we can spin-diagonalize the Dirac offeratibie
case of the temporally odd-number lattif&l

Y MY(8)yuDuM(s+ f1) = diag(nuDy, NuDy, —NuDy, —NuDy), (5.11)
[

wheren,D,, is the KS Dirac operator given by E.Q). Then, for eaciA,, two positive modes and

two negative modes appear relating to the spinor structure on the temporally odd-number lattice.
(Note also that the chiral partngg|n) gives an eigenmode with the eigenvaluig\,.) In any case,

all the eigenvalueB\,, can be obtained by solving the reduced Dirac eigenvalue equation

NuDy|n) = £iAn|n) (5.12)

just like the case of even lattices. The relation between the Dirac eigenfungtish and the
sponless eigenfunctioxy(s) = (s|n) is given by

Wn(S) = M(s) Xn(s) (5.13)

on the temporally odd-number lattice.
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6. Numerical confirmation for the relation between Polyakov loop and Dirac modes

Using the modified KS formalism, EEL@) is rewritten as

(2ai)N-1t

{Le) = "—%;

> At (n[Ua|n). (6.1)

n

Note that the (modified) KS formalism is an exact method for diagonalizing the Dirac operator and
is not an approximation, so that EgER) and 1) are completely equivalent. In fact, the relation
(4.9 can be confirmed by the numerical test of the relatf@d)(

We numerically calculate LHS and RHS of the relatidl), respectively, and compare them
[I7]. We perform SU(3) lattice QCD Monte Carlo simulations with the standard plaquette action
at the quenched level in both cases of confined and deconfined phases. For the confined phase, we
use 18 x 5 lattice with 3 = 2N./g? = 5.6 (i.e.,a ~ 0.25 fm), corresponding t&@ = 1/(Nia) ~
160 MeV. For the deconfined phase, we usé 4@ lattice with 3 = 5.7 (i.e., a~ 0.20 fm),
corresponding t@ = 1/(Nia) ~ 330 MeV.

As the numerical result, comparing LHS and RHS of the relaliof) (we find that the relation
(&) is almost exact even for each gauge configuration in both confined and deconfined[pffjases [
Therefore, the relatiofe(]) is satisfied also for the gauge-configuration average.

Next, we numerically confirm that the low-lying Dirac modes have negligible contribution to
the Polyakov loop using E@(]). By checking all the Dirac modes, we find that the matrix element
(n|U4|n) is generally nonzero for each Dirac mo@&[]]. In fact, for low-lying Dirac modes,
the factorAN 1 plays a crucial role in RHS of E@(J). Since RHS of EqA.]) is expressed as a
sum of the Dirac-mode contribution, we calculate the Polyakov loop without low-lying Dirac-mode
contribution as

- )
<Lp>|R_CutE(2agv T ANy, 6.2)

Mn‘>/\IR

with the IR cut/Ar for the Dirac eigenvalue. The chiral condensate without the contribution from
the low-lying Dirac-mode below IR cutr is given by [B, 7]

_ 1 2m

(QOAR = —5 -
" V )\n>/\|R )\I'% + rnz

(6.3)

wherem is the current quark mass. Here, we take the IR cukgf~ 0.4GeV. In the confined
phase, this IR Dirac-mode cut leads(tm)/(qq) ~ 0.02 and almost chiral-symmetry restoration

for the current quark masa ~ 5MeV.

We find that(Lp) ~ (Lp)r-cut IS NUMerically satisfied even for each gauge configuration in
both confined and deconfined phases. Table 1 and 2 show the numerical réspiltaofd(Lp)|r-cut
in each gauge configuration for confined and deconfined phases, respectively. Thus, the Polyakov
loop is almost unchanged by removing the contribution from the low-lying Dirac md@is [
which are essential for chiral symmetry breaking. From both analytical and numerical results, we
conclude that low-lying Dirac modes are not essential modes for confinement, which indicates no
direct one-to-one correspondence between confinement and chiral symmetry breaking in QCD.

10



Analytical relation between confinement and chiral symmetry breaking in lattice QQBideo Suganuma

Table 1: Numerical results fofLp) and(Lp)r-cut in lattice QCD with 18 x 5 andp = 5.6 for each gauge
configuration, where the system is in confined phase.

configuration No. 1 2 3 4 5 6 7
Re(Lp) 0.00961 | -0.00161| 0.0139 | -0.00324| 0.000689| 0.00423| -0.00807
Im(Lp) -0.00322| -0.00125| -0.00438| -0.00519| -0.0101 | -0.0168 | -0.00265

Re(Lp)ir-cut 0.00961 | -0.00160| 0.0139 | -0.00325| 0.000706| 0.00422| -0.00807
Im(Lp)r-cut -0.00321| -0.00125| -0.00437| -0.00520| -0.0101 | -0.0168 | -0.00264

Table 2: Numerical results fofLp) and(Lp)r-cut in lattice QCD with 18 x 3 andp = 5.7 for each gauge
configuration, where the system is in deconfined phase.

configuration No. 1 2 3 4 5 6 7
Re(Lp) 0.316 0.337 0.331 0.305 0.314 0.316 0.337
Im(Lp) -0.00104| -0.00597| 0.00723| -0.00334| 0.00167| 0.000120| 0.0000482

Re(Lp)ir-cut 0.319 0.340 0.334 0.307 0.317 0.319 0.340
Im(Lp)r-cut -0.00103| -0.00597| 0.00724| -0.00333| 0.00167| 0.000121| 0.0000475

7. Summary and concluding remarks

In this study, we have analytically derived a direct relation between the Polyakov loop and
the Dirac modes in temporally odd-number lattice Q@D, [[T], on ordinary square lattices with
the normal (nontwisted) periodic boundary condition for link-variables. We have shown that the
low-lying Dirac modes have quite small contribution to the Polyakov |GEhT].

As a new method, we have modified the KS formalism to perform the spin-diagonalization of
the Dirac operator on the temporally odd-number lat{icd.[ In lattice QCD calculations, using
the “modified KS formalism”, we have numerically shown that the contribution of low-lying Dirac
modes to the Polyakov loop is negligibly small in both confined and deconfined pAdkes [

From the analytical relatiof{6) and the numerical confirmation, we conclude that low-lying
Dirac-modes have little contribution to the Polyakov loop, and are not essential for confinement,
while these modes are essential for chiral symmetry breaking. This conclusion indicates no direct
one-to-one correspondence between confinement and chiral symmetry breaking in QCD.

Since the relatiod.g) is correct in the presence of dynamical quarks and also at finite density,
it is interesting to investigate EELE) in full QCD simulations and at finite baryon density.

Our results suggest some independence between chiral symmetry breaking and color confine-
ment, which may lead to richer phase structure in QCD. For example, the phase transition point
can be different between deconfinement and chiral restoration in the presence of strong electro-
magnetic fields, because of their nontrivial effect on chiral symmgy [

As afuture work, it is interesting to investigate the Polyakov-loop fluctuation, which is recently
found to be important in the QCD phase transiti@g|] It is also meaningful to compare with other
lattice QCD result on importance of infrared gluons to confinement, i.e., confinement originates
from the low-momentum gluons below 1.5GeV in Landau gaZg [

In any case, the research for the direct relation between confinement and chiral symmetry
breaking would give a new direction in the theoretical study of nonperturbative QCD.
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