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In lattice QCD formalism, we derive an analytical gauge-invariant relation between the Polyakov

loop ⟨LP⟩ and the Dirac eigenvaluesλn in QCD, i.e.,⟨LP⟩ ∝ ∑n λ Nt−1
n ⟨n|Û4|n⟩, by considering

Tr(Û4 ˆ̸DNt−1
) on a temporally odd-number lattice, where the temporal lattice sizeNt is odd. This

formula is a Dirac spectral representation of the Polyakov loop in terms of Dirac eigenmodes|n⟩.
We here use an ordinary square lattice with the normal (nontwisted) periodic boundary condition

for link-variablesUµ(s) in the temporal direction. From this relation, one can estimate each con-

tribution of the Dirac eigenmode to the Polyakov loop. Because of the factorλ Nt−1
n in the Dirac

spectral sum, this analytical relation generally indicates quite small contribution of low-lying

Dirac modes to the Polyakov loop in both confined and deconfined phases, while the low-lying

Dirac modes are essential for chiral symmetry breaking. Also in lattice QCD calculations in con-

fined and deconfined phases, we numerically confirm the analytical relation, non-zero finiteness

of ⟨n|Û4|n⟩ for each Dirac mode, and negligibly small contribution of low-lying Dirac modes

to the Polyakov loop, i.e., the Polyakov loop is almost unchanged even by removing low-lying

Dirac-mode contribution from the QCD vacuum generated by lattice QCD simulations. Thus, we

conclude that low-lying Dirac modes are not essential modes for confinement, which indicates no

direct one-to-one correspondence between confinement and chiral symmetry breaking in QCD.
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1. Introduction: Are color confinement and CSB one-to-one in QCD?

Quantum chromodynamics (QCD) has two outstanding nonperturbative phenomena of color
confinement and spontaneous chiral-symmetry breaking [1] in the low-energy region, and their
derivation is one of the most important problems in theoretical physics. For quark confinement, the
Polyakov loop⟨LP⟩ is a typical order parameter, and relates to the single-quark free energyEq as
⟨LP⟩ ∝ e−Eq/T at temperatureT. ⟨LP⟩ is also an order parameter ofZNc center symmetry in QCD
[2]. For chiral symmetry breaking, the standard order parameter is the chiral condensate⟨q̄q⟩, and
low-lying Dirac modes play the essential role, as the Banks-Casher relation [3] indicates.

The relation between confinement and chiral symmetry breaking is also one of the important
physical issues [4, 5, 6, 7, 8, 9, 10, 11], and there are several circumstantial evidence on their
correlation. For example, lattice QCD simulations have shown almost coincidence between decon-
finement and chiral-restoration temperatures [2, 12], although slight difference of about 25MeV
between them is pointed out in some recent lattice QCD studies [13]. Their correlation is also sug-
gested in terms of QCD-monopoles [4, 5], which topologically appear in QCD in the maximally
Abelian gauge [14, 15, 16, 17, 18], leading to the dual-superconductor picture [19]. Actually, by
removing the monopoles from the QCD vacuum generated in lattice QCD, confinement and chiral
symmetry breaking are simultaneously lost [5], as schematically shown in Fig.1. This fact indicates
an important role of monopoles to both confinement and chiral symmetry breaking, and thus these
two phenomena seem to be related via the monopole. However, in spite of the essential role of
monopoles, the direct relation of confinement and chiral symmetry breaking is still unclear.

QCD� QCD in  

MA gauge�

MA  gauge fixing�

Monopole  

projection�

Photon  

projection�

Monopole part�

Photon part�

Monopole current�

Only with monopole,  
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Chiral Sym Breaking, 

Instanton are reproduced�

After removing monopole,  

No Confinement,  

No Chiral Breaking, 

No Instanton�

Hodge 
decomposition�

Figure 1: The role of monopoles to nonperturbative QCD. In the MA gauge, QCD becomes Abelian-like
due to the large off-diagonal gluon mass of about 1GeV [17], and monopole current topologically appears
[14, 15]. By the Hodge decomposition, the QCD system can be divided into the monopole part and the
photon part. The monopole part has confinement [15], chiral symmetry breaking [5] and instantons [16],
while the photon part does not have all of them, as shown in lattice QCD. In spite of the essential role of
monopoles, the direct relation of confinement and chiral symmetry breaking is still unclear.

Then, we have a question.If only the relevant ingredient of chiral symmetry breaking is care-
fully removed from the QCD vacuum, how will be quark confinement?

To obtain the answer, in this paper, we derive an analytical relation between the Polyakov loop
and the Dirac modes in temporally odd-number lattice QCD, where the temporal lattice size is odd,
and discuss the relation between confinement and chiral symmetry breaking.
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2. Lattice QCD formalism for Dirac operator, Dirac eigenvalues and Dirac modes

First, we clarify the mathematical condition of lattice QCD formalism adopted in this study
[10, 11]. We use an ordinary Euclidean square lattice with spacinga and sizeV ≡ N3

s ×Nt . The
normal (nontwisted) periodic boundary condition is used for the link-variableUµ(s) = eiagAµ (s) in
the temporal direction, which is physically required at finite temperatures. We take SU(Nc) as the
gauge group, although any gauge groupG can be taken for most arguments in this paper.

Note that, in our studies, we just consider the mathematical expansion by eigenmodes|n⟩ of
the Dirac operator̸D = γµDµ , using the completeness of∑n |n⟩⟨n| = 1. In general, instead of̸D,
one can consider any (anti)hermitian operator, e.g.,D2 = DµDµ , and the expansion in terms of its
eigenmodes [7]. In this paper, to consider chiral symmetry breaking, we adoptD̸ and the expansion
by its eigenmodes.

In lattice QCD, the Dirac operator̸D = γµDµ is expressed withUµ(s) = eiagAµ (s) as

̸Ds,s′ ≡
1
2a

4

∑
µ=1

γµ
[
Uµ(s)δs+µ̂,s′ −U−µ(s)δs−µ̂,s′

]
, (2.1)

with U−µ(s)≡U†
µ(s− µ̂) and lattice unit vector̂µ. Taking hermitianγµ = γ†

µ , the Dirac operatorD̸
is anti-hermitian and satisfiesD̸†

s′,s =− ̸Ds,s′ . We introduce the normalized Dirac eigen-state|n⟩ as

̸D|n⟩= iλn|n⟩, ⟨m|n⟩= δmn, (2.2)

with the Dirac eigenvalueiλn (λn ∈R). Because of{γ5,D̸}= 0, the stateγ5|n⟩ is also an eigen-state
of ̸D with the eigenvalue−iλn. Here, the Dirac eigen-state|n⟩ satisfies the completeness of

∑
n
|n⟩⟨n|= 1. (2.3)

The Dirac eigenfunctionψn(s)≡ ⟨s|n⟩ satisfies̸Dψn(s) = iλnψn(s), i.e.,

1
2a

4

∑
µ=1

γµ [Uµ(s)ψn(s+ µ̂)−U−µ(s)ψn(s− µ̂)] = iλnψn(s). (2.4)

By the gauge transformation ofUµ(s)→V(s)Uµ(s)V†(s+ µ̂), ψn(s) is gauge-transformed as

ψn(s)→V(s)ψn(s), (2.5)

which is the same as that of the quark field. (To be strict, there can appear an irrelevantn-dependent
global phase factoreiϕn[V], according to arbitrariness of the phase in the basis|n⟩ [8].)

The spectral densityρ(λ ) of the Dirac operator̸D relates to chiral symmetry breaking, e.g.,
the zero-eigenvalue densityρ(0) leads to⟨q̄q⟩ (Banks-Casher’s relation) [3]. In fact, the low-lying
Dirac modes are regarded as the essential modes responsible to chiral symmetry breaking in QCD.

Here, we take the operator formalism in lattice QCD [7, 8, 9] by introducing the link-variable
operatorÛ±µ defined by the matrix element of

⟨s|Û±µ |s′⟩=U±µ(s)δs±µ̂,s′ . (2.6)

3
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With the link-variable operator, the Dirac operator and covariant derivative are simply expressed as

̸D̂ =
1
2a

4

∑
µ=1

γµ(Ûµ −Û−µ), D̂µ =
1
2a

(Ûµ −Û−µ). (2.7)

The Polyakov loop is also simply written as the functional trace ofÛNt
4 , i.e.,⟨LP⟩= 1

NcV
⟨Trc{ÛNt

4 }⟩,
where “Trc” denotes the functional trace of Trc ≡ ∑strc including the trace trc over color index. For
large volumeV, one can expect⟨O⟩ ≃ Tr O/Tr 1 for any operatorO at each gauge configuration.
The Dirac-mode matrix element of the link-variable operatorÛµ can be expressed withψn(s) as

⟨m|Ûµ |n⟩= ∑
s
⟨m|s⟩⟨s|Ûµ |s+ µ̂⟩⟨s+ µ̂|n⟩= ∑

s
ψ†

m(s)Uµ(s)ψn(s+ µ̂), (2.8)

which is gauge invariant, because of (2.5), apart from an irrelevant global phase factor [8].

3. Previous numerical study: Dirac-mode expansion and Dirac-mode projection

We here review our previous studies [7, 8, 9] on “Dirac-mode expansion”, “Dirac-mode pro-
jection” where the Dirac-mode space is restricted, and the role of low-lying Dirac modes to con-
finement in SU(3) lattice QCD.

From the completeness of the Dirac-mode basis,∑n |n⟩⟨n| = 1, arbitrary operator̂O can be
expanded in terms of the Dirac-mode basis|n⟩ as Ô = ∑n ∑m|n⟩⟨n|Ô|m⟩⟨m|. With this relation,
we consider the Dirac-mode expansion and Dirac-mode projection. We define the projection op-
eratorP̂ ≡ ∑n∈A |n⟩⟨n|, which restricts the Dirac-mode space to its arbitrary subsetA. Using the
projection operator̂P, we define the Dirac-mode projected link-variable operatorÛP

µ ≡ P̂Ûµ P̂ =

∑m∈A ∑n∈A |m⟩⟨m|Ûµ |n⟩⟨n|, the Dirac-mode projected Wilson-loop operatorŴP ≡ ∏N
k=1ÛP

µk
, the

Dirac-mode projected inter-quark potentialVP(R)≡− limT→∞
1
T ln⟨Trc ŴP(R,T)⟩ from theR×T

rectangular Wilson loop, and the Dirac-mode projected Polyakov loop⟨LP⟩proj. ≡ 1
NcV

⟨Trc (ÛP
4 )

Nt ⟩.
In Refs.[7, 8], we use SU(3) quenched lattice QCD atβ = 5.6 (i.e.,a≃ 0.25fm) on 64, and take

the IR-cutoffΛIR = 0.5a−1 ≃ 0.4GeV for the Dirac modes, which leads an extreme reduction of the
chiral condensate as⟨q̄q⟩ΛIR/⟨q̄q⟩ ≃ 0.02 for the current quark massm≃ 5MeV. Figure 2 shows
the IR-Dirac-mode-cut Wilson loop⟨TrcŴP(R,T)⟩, the IR-cut inter-quark potentialVP(R), and the
IR-Dirac-mode-cut Polyakov loop⟨LP⟩IR-cut, after the removal of the low-lying Dirac modes.

Remarkably, even after removing the coupling to the low-lying Dirac modes, the IR-Dirac-
mode-cut Wilson loop obeys the area law as⟨WP(R,T)⟩ ∝ e−σPRT, and the slopeσP, i.e., the string
tension, is almost unchanged asσP ≃ σ . As shown in Fig.2(b), the IR-cut inter-quark potential
VP(R) is almost unchanged from the original one, apart from an irrelevant constant. Also from
Fig.2(c), we find that the IR-Dirac-mode-cut Polyakov loop is almost zero,⟨LP⟩IR-cut ≃ 0, which
meansZ3-unbroken confinement phase. In this way, confinement is kept even in the absence of
low-lying Dirac modes or the essence of chiral symmetry breaking [7, 8, 9].

We also investigate the UV-cut of Dirac modes in lattice QCD, and find that the confining force
is almost unchanged by the UV-cut [7, 8, 9]. Furthermore, we examine “intermediate(IM)-cut” of
Dirac modes, and obtain almost the same confining force [7, 8].

From these lattice QCD results, there is no specific region of the Dirac modes responsible to
confinement. In other words, we conjecture that the “seed” of confinement is distributed not only
in low-lying Dirac modes but also in a wider region of the Dirac-mode space.
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Figure 2: Lattice QCD results [7, 8] after the removal of low-lying Dirac modes below the IR-cutoffΛIR =

0.5a−1 ≃ 0.4GeV. (a) The IR-cut Wilson loop⟨Trc WP(R,T)⟩ (circle) plotted againstR×T. The slopeσP

is almost the same as that of the original Wilson loop (square). (b) The IR-cut inter-quark potentialVP(R)
(circle).VP(R) is almost unchanged from the original one (square), apart from an irrelevant constant. (c) The
scatter plot of the IR-cut Polyakov loop⟨LP⟩IR-cut. ⟨LP⟩IR-cut ≃ 0 meansZ3-unbroken confinement phase.

4. Analytical relation of the Polyakov loop and Dirac modes in odd-Nt lattice QCD

Now, we consider temporally odd-number lattice QCD, where the temporal lattice sizeNt

is odd [10, 11]. Here, we use an ordinary square lattice with the normal (nontwisted) periodic
boundary condition for link-variablesUµ(s) in the temporal direction. The spatial lattice sizeNs is
taken to be larger thanNt , i.e.,Ns> Nt . Note that, in the continuum limit ofa→ 0 andNt → ∞, any
large numberNt gives the same physical result. Then, to use the odd-number lattice is no problem.

Figure 3: An example of the temporally odd-number lattice (Nt = 3 case). Only gauge-invariant quantities
such as closed loops and the Polyakov loop survive in QCD, after taking the expectation value, i.e., the
gauge-configuration average. Geometrically, closed loops have even-number links on the square lattice.

As a general mathematical argument of the Elitzur theorem [2], only gauge-invariant quantities
such as closed loops and the Polyakov loop survive in QCD. In fact, all the non-closed lines are
gauge-variant and their expectation values are zero. Note here that any closed loop needs even-
number link-variables on the square lattice, except for the Polyakov loop [10]. (See Fig.3.)

In temporally odd-number lattice QCD [10, 11], we consider the functional trace of

I ≡ Trc,γ(Û4 ˆ̸DNt−1
), (4.1)

where Trc,γ ≡ ∑strctrγ includes trc and the trace trγ over spinor index. Its expectation value

⟨I⟩= ⟨Trc,γ(Û4 ˆ̸DNt−1
)⟩ (4.2)

is obtained as the gauge-configuration average in lattice QCD. When the volumeV is enough large,
one can expect⟨O⟩ ≃ Tr O/Tr 1 for any operatorO even in each gauge configuration.

5
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From Eq.(2.7), Û4 ̸D̂Nt−1 can be expressed as a sum of products ofNt link-variable operators,
since the Dirac operator̸D̂ includes one link-variable operator in each direction of±µ. In fact,
Û4 ̸D̂Nt−1 includes “many trajectories” with the total lengthNt (in lattice unit) on the square lattice,
as shown in Fig.4. Note that all the trajectories with the odd-number lengthNt cannot form a closed
loop on the square lattice, and give gauge-variant contribution, except for the Polyakov loop [10].

Figure 4: Partial examples of the trajectories stemming from⟨Trc,γ(Û4 ̸D̂Nt−1)⟩. For each trajectory, the
total length isNt , and the “first step” is positive temporal direction corresponding toÛ4. All the trajectories
with the odd-number lengthNt cannot form a closed loop on the square lattice, so that they are gauge-variant
and give no contribution in⟨Trc,γ(Û4 ̸D̂Nt−1)⟩, except for the Polyakov loop.

Hence, among the trajectories stemming from⟨Trc,γ(Û4 ̸D̂Nt−1)⟩, all the non-loop trajectories
are gauge-variant and give no contribution, according to the Elitzur theorem [2]. Only the exception
is the Polyakov loop. (Compare Figs.4 and 5.) Note that⟨Trc,γ(Û4 ̸D̂Nt−1)⟩ does not include the
anti-Polyakov loop⟨L†

P⟩, since the “first step” is positive temporal direction corresponding toÛ4.
Thus, in the functional trace⟨I⟩ = ⟨Trc,γ(Û4 ̸D̂Nt−1)⟩, only the Polyakov-loop ingredient can

survive as the gauge-invariant quantity, and⟨I⟩ is proportional to the Polyakov loop⟨LP⟩.

Figure 5: Among the trajectories stemming from⟨Trc,γ(Û4 ̸D̂Nt−1)⟩, only the Polyakov-loop ingredient can
survive as the gauge-invariant quantity. Owing to the first factorÛ4, ⟨Trc,γ(Û4 ̸D̂Nt−1)⟩ does not include⟨L†

P⟩.

Actually, we can mathematically derive the following relation [10]:

⟨I⟩ = ⟨Trc,γ(Û4 ˆ̸DNt−1
)⟩

= ⟨Trc,γ{Û4(γ4D̂4)
Nt−1}⟩ (

... only gauge-invariant terms survive)

= 4⟨Trc(Û4D̂Nt−1
4 )⟩ (

... γNt−1
4 = 1, trγ1= 4)

=
4

(2a)Nt−1⟨Trc{Û4(Û4−Û−4)
Nt−1}⟩ (

... D̂4 =
1
2a

(Û4−Û−4))

=
4

(2a)Nt−1⟨Trc{ÛNt
4 }⟩= 12V

(2a)Nt−1⟨LP⟩. (
... only gauge-invariant terms survive) (4.3)

6
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We thus obtain the relation between⟨I⟩= ⟨Trc,γ(Û4 ˆ̸DNt−1
)⟩ and the Polyakov loop⟨LP⟩,

⟨I⟩= ⟨Trc,γ(Û4 ˆ̸DNt−1
)⟩= 12V

(2a)Nt−1⟨LP⟩. (4.4)

On the other hand, we calculate the functional trace in Eq.(4.2) using the complete set of the
Dirac-mode basis|n⟩ satisfying∑n |n⟩⟨n|= 1, and find the Dirac-mode representation of

⟨I⟩= ∑
n
⟨n|Û4 ̸D̂Nt−1|n⟩= iNt−1∑

n
λ Nt−1

n ⟨n|Û4|n⟩. (4.5)

Combing Eqs.(4.4) and (4.5), we obtain the analytical relation between the Polyakov loop⟨LP⟩ and
the Dirac eigenvaluesiλn [10] in QCD:

⟨LP⟩=
(2ai)Nt−1

12V ∑
n

λ Nt−1
n ⟨n|Û4|n⟩. (4.6)

This is a direct relation between the Polyakov loop⟨LP⟩ and the Dirac modes in QCD, i.e., a “Dirac
spectral representation of the Polyakov loop”, and is mathematically valid on the temporally odd-
number lattice in both confined and deconfined phases. Based on Eq.(4.6), we can investigate
each Dirac-mode contribution to the Polyakov loop individually, e.g., by evaluating each contri-
bution specified byn numerically in lattice QCD. In particular, by paying attention to low-lying
Dirac modes in Eq.(4.6), the relation between confinement and chiral symmetry breaking can be
discussed in QCD.

As a remarkable fact, because of the factorλ Nt−1
n , the contribution from low-lying Dirac-

modes with|λn| ≃ 0 is negligibly small in the Dirac spectral sum of RHS in Eq.(4.6), compared
to the other Dirac-mode contribution. In fact, the low-lying Dirac modes have little contribution to
the Polyakov loop, regardless of confined or deconfined phase [10, 11]. (This result agrees with the
previous numerical lattice results that confinement properties are almost unchanged by removing
low-lying Dirac modes from the QCD vacuum [7, 8, 9].) Thus, we conclude from the relation (4.6)
that low-lying Dirac modes are not essential modes for confinement, which indicates no direct
one-to-one correspondence between confinement and chiral symmetry breaking in QCD.

Here, we give several comments on the relation (4.6) in order.

1. Equation (4.6) is a manifestly gauge-invariant relation. Actually, the matrix element⟨n|Û4|n⟩
can be expressed with the Dirac eigenfunctionψn(s) and the temporal link-variableU4(s) as

⟨n|Û4|n⟩= ∑
s
⟨n|s⟩⟨s|Û4|s+ t̂⟩⟨s+ t̂|n⟩= ∑

s
ψ†

n(s)U4(s)ψn(s+ t̂), (4.7)

and each termψ†
n(s)U4(s)ψn(s+ t̂) is manifestly gauge invariant, because of the gauge trans-

formation property (2.5). [Global phase factors also cancel exactly between⟨n| and|n⟩.]

2. In RHS of Eq.(4.6), there is no cancellation between chiral-pair Dirac eigen-states,|n⟩ and
γ5|n⟩, because(Nt −1) is even, i.e.,(−λn)

Nt−1 = λ Nt−1
n , and⟨n|γ5Û4γ5|n⟩= ⟨n|Û4|n⟩.

3. Even in the presence of a possible multiplicative renormalization factor for the Polyakov
loop, the contribution from the low-lying Dirac modes (or the small|λn| region) is relatively
negligible, compared to other Dirac-mode contribution in the sum of RHS in Eq.(4.6).

7
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4. For the arbitrary color numberNc, Eq.(4.6) is true and applicable in the SU(Nc) gauge theory.

5. If RHS in Eq.(4.6) werenot a sum but a product, low-lying Dirac modes should have given
an important contribution to the Polyakov loop as a crucial reduction factor ofλ Nt−1

n . In the
sum, however, the contribution (∝ λ Nt−1

n ) from the small|λn| region is negligible.

6. Even if ⟨n|Û4|n⟩ behaves as theδ -functionδ (λ ), the factorλ Nt−1
n is still crucial in RHS of

Eq.(4.6), because ofλδ (λ ) = 0.

7. The relation (4.6) is correct regardless of presence or absence of dynamical quarks, although
dynamical quark effects appear in⟨LP⟩, the Dirac eigenvalue distributionρ(λ ) and⟨n|Û4|n⟩.

8. The relation (4.6) is correct also at finite baryon density and finite temperature.

9. Equation (4.6) obtained on the odd-number lattice is correct in the continuum limit ofa→ 0
andNt → ∞, since any number of largeNt gives the same physical result.

Note that most of the above arguments can be numerically confirmed by lattice QCD calcu-
lations. Using actual lattice QCD calculations at the quenched level, we numerically confirm the
analytical relation (4.6), non-zero finiteness of⟨n|Û4|n⟩ for each Dirac mode, and the negligibly
small contribution of low-lying Dirac modes to the Polyakov loop, in both confined and deconfined
phases [10, 11], as will be shown in Sec.5. Although we numerically find an interesting drastic
change of the behavior of⟨n|Û4|n⟩ between confined and deconfined phases, we find also quite
small contribution of low-lying Dirac modes to the Polyakov loop.

5. Modified KS formalism for temporally odd-number lattice

The Dirac operatorD̸ has a large dimension of(4×Nc×V)2, and hence the numerical cost for
solving the Dirac eigenvalue equation is quite huge. This numerical cost can be partially reduced
using the Kogut-Susskind (KS) formalism [2, 8, 11, 20]. However, the original KS formalism can
be applied only to the “even lattice” where all the lattice sizesNµ are even number. In this section,
we modify the KS formalism to be applicable to the odd-number lattice [11]. Using the “modified
KS formalism”, we can reduce the numerical cost in the case of the temporally odd-number lattice.

In the original KS formalism for even lattices, using the matrixT(s) ≡ γs1
1 γs2

2 γs3
3 γs4

4 , all the
γ-matrices can be diagonalized asT†(s)γµT(s± µ̂) = ηµ(s)1, whereηµ(s) is the staggered phase,
η1(s)≡ 1, ηµ(s)≡ (−1)s1+···+sµ−1 (µ ≥ 2). Then, the Dirac operator̸D is spin-diagonalized as

∑
µ

T†(s)γµDµT(s+ µ̂) = diag(ηµDµ ,ηµDµ ,ηµDµ ,ηµDµ), (5.1)

whereηµDµ is the KS Dirac operator given by

(ηµDµ)ss′ =
1
2a

4

∑
µ=1

ηµ(s)
[
Uµ(s)δs+µ̂,s′ −U−µ(s)δs−µ̂,s′

]
. (5.2)

Equation (5.1) shows fourfold degeneracy of the Dirac eigenvalue relating to the spiror structure,
and then all the eigenvaluesiλn are obtained by solving the reduced Dirac eigenvalue equation

ηµDµ |n) = iλn|n). (5.3)
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Using the eigenfunctionχn(s)≡ ⟨s|n) of the KS Dirac operator, the explicit form of Eq.(5.3) reads

1
2a

4

∑
µ=1

ηµ(x)[Uµ(x)χn(x+ µ̂)−U−µ(x)χn(x− µ̂)] = iλnχn(x), (5.4)

where the relation between the Dirac eigenfunctionψn(s) and the spinless eigenfunctionχn(s) is

ψn(s) = T(s)χn(s). (5.5)

Note here that the original KS formalism is applicable only to even lattices in the presence of
the periodic boundary condition [11]. In fact, the periodic boundary condition requires

T(s+Nµ µ̂) = T(s) (µ = 1,2,3,4), (5.6)

however, it is satisfied only on even lattices. Note also that, while the spatial boundary condition
can be changed arbitrary, the temporal periodic boundary condition physically appears and can-
not be changed at finite temperatures. Thus, the original KS formalism cannot be applied on the
temporally odd-number lattice.

Now, we consider the temporally odd-number lattice, with all the spatial lattice size being
even. Instead of the matrixT(s), we introduce a new matrix [11]

M(s)≡ γs1
1 γs2

2 γs3
3 γs1+s2+s3

4 , (5.7)

where the exponent ofγ4 differs from T(s). As a remarkable feature, the requirement from the
periodic boundary condition is satisfied on the temporally odd-number lattice [11]:

M(s+Nµ µ̂) = M(s) (µ = 1,2,3,4). (5.8)

Using the matrixM(s), all theγ-matrices are transformed to be proportional toγ4:

M†(s)γµM(s± µ̂) = ηµ(s)γ4, (5.9)

whereηµ(x) is the staggered phase. In the Dirac representation,γ4 is diagonal as

γ4 = diag(1,1,−1,−1) (Dirac representation), (5.10)

and we take the Dirac representation. Thus, we can spin-diagonalize the Dirac operator̸D in the
case of the temporally odd-number lattice [11]:

∑
µ

M†(s)γµDµM(s+ µ̂) = diag(ηµDµ ,ηµDµ ,−ηµDµ ,−ηµDµ), (5.11)

whereηµDµ is the KS Dirac operator given by Eq.(5.2). Then, for eachλn, two positive modes and
two negative modes appear relating to the spinor structure on the temporally odd-number lattice.
(Note also that the chiral partnerγ5|n⟩ gives an eigenmode with the eigenvalue−iλn.) In any case,
all the eigenvaluesiλn can be obtained by solving the reduced Dirac eigenvalue equation

ηµDµ |n) =±iλn|n) (5.12)

just like the case of even lattices. The relation between the Dirac eigenfunctionψn(s) and the
sponless eigenfunctionχn(s)≡ ⟨s|n) is given by

ψn(s) = M(s)χn(s) (5.13)

on the temporally odd-number lattice.
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6. Numerical confirmation for the relation between Polyakov loop and Dirac modes

Using the modified KS formalism, Eq.(4.6) is rewritten as

⟨LP⟩=
(2ai)Nt−1

3V ∑
n

λ Nt−1
n (n|Û4|n). (6.1)

Note that the (modified) KS formalism is an exact method for diagonalizing the Dirac operator and
is not an approximation, so that Eqs.(4.6) and (6.1) are completely equivalent. In fact, the relation
(4.6) can be confirmed by the numerical test of the relation (6.1).

We numerically calculate LHS and RHS of the relation (6.1), respectively, and compare them
[11]. We perform SU(3) lattice QCD Monte Carlo simulations with the standard plaquette action
at the quenched level in both cases of confined and deconfined phases. For the confined phase, we
use 103× 5 lattice withβ ≡ 2Nc/g2 = 5.6 (i.e., a ≃ 0.25 fm), corresponding toT ≡ 1/(Nta) ≃
160 MeV. For the deconfined phase, we use 103 × 3 lattice with β = 5.7 (i.e., a ≃ 0.20 fm),
corresponding toT ≡ 1/(Nta)≃ 330 MeV.

As the numerical result, comparing LHS and RHS of the relation (6.1), we find that the relation
(6.1) is almost exact even for each gauge configuration in both confined and deconfined phases [11].
Therefore, the relation (6.1) is satisfied also for the gauge-configuration average.

Next, we numerically confirm that the low-lying Dirac modes have negligible contribution to
the Polyakov loop using Eq.(6.1). By checking all the Dirac modes, we find that the matrix element
(n|Û4|n) is generally nonzero for each Dirac mode [10, 11]. In fact, for low-lying Dirac modes,
the factorλ Nt−1

n plays a crucial role in RHS of Eq.(6.1). Since RHS of Eq.(6.1) is expressed as a
sum of the Dirac-mode contribution, we calculate the Polyakov loop without low-lying Dirac-mode
contribution as

⟨LP⟩IR-cut ≡
(2ai)Nt−1

3V ∑
|λn|>ΛIR

λ Nt−1
n (n|Û4|n), (6.2)

with the IR cutΛIR for the Dirac eigenvalue. The chiral condensate without the contribution from
the low-lying Dirac-mode below IR cutΛIR is given by [8, 11]

⟨q̄q⟩ΛIR =− 1
V ∑

λn>ΛIR

2m
λ 2

n +m2 , (6.3)

wherem is the current quark mass. Here, we take the IR cut ofΛIR ≃ 0.4GeV. In the confined
phase, this IR Dirac-mode cut leads to⟨q̄q⟩ΛIR/⟨q̄q⟩ ≃ 0.02 and almost chiral-symmetry restoration
for the current quark massm≃ 5MeV.

We find that⟨LP⟩ ≃ ⟨LP⟩IR-cut is numerically satisfied even for each gauge configuration in
both confined and deconfined phases. Table 1 and 2 show the numerical result of⟨LP⟩ and⟨LP⟩IR-cut

in each gauge configuration for confined and deconfined phases, respectively. Thus, the Polyakov
loop is almost unchanged by removing the contribution from the low-lying Dirac modes [11],
which are essential for chiral symmetry breaking. From both analytical and numerical results, we
conclude that low-lying Dirac modes are not essential modes for confinement, which indicates no
direct one-to-one correspondence between confinement and chiral symmetry breaking in QCD.
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Table 1: Numerical results for⟨LP⟩ and⟨LP⟩IR-cut in lattice QCD with 103×5 andβ = 5.6 for each gauge
configuration, where the system is in confined phase.

configuration No. 1 2 3 4 5 6 7

Re⟨LP⟩ 0.00961 -0.00161 0.0139 -0.00324 0.000689 0.00423 -0.00807
Im⟨LP⟩ -0.00322 -0.00125 -0.00438 -0.00519 -0.0101 -0.0168 -0.00265

Re⟨LP⟩IR-cut 0.00961 -0.00160 0.0139 -0.00325 0.000706 0.00422 -0.00807
Im⟨LP⟩IR-cut -0.00321 -0.00125 -0.00437 -0.00520 -0.0101 -0.0168 -0.00264

Table 2: Numerical results for⟨LP⟩ and⟨LP⟩IR-cut in lattice QCD with 103×3 andβ = 5.7 for each gauge
configuration, where the system is in deconfined phase.

configuration No. 1 2 3 4 5 6 7

Re⟨LP⟩ 0.316 0.337 0.331 0.305 0.314 0.316 0.337
Im⟨LP⟩ -0.00104 -0.00597 0.00723 -0.00334 0.00167 0.000120 0.0000482

Re⟨LP⟩IR-cut 0.319 0.340 0.334 0.307 0.317 0.319 0.340
Im⟨LP⟩IR-cut -0.00103 -0.00597 0.00724 -0.00333 0.00167 0.000121 0.0000475

7. Summary and concluding remarks

In this study, we have analytically derived a direct relation between the Polyakov loop and
the Dirac modes in temporally odd-number lattice QCD [10, 11], on ordinary square lattices with
the normal (nontwisted) periodic boundary condition for link-variables. We have shown that the
low-lying Dirac modes have quite small contribution to the Polyakov loop [10, 11].

As a new method, we have modified the KS formalism to perform the spin-diagonalization of
the Dirac operator on the temporally odd-number lattice [11]. In lattice QCD calculations, using
the “modified KS formalism”, we have numerically shown that the contribution of low-lying Dirac
modes to the Polyakov loop is negligibly small in both confined and deconfined phases [11].

From the analytical relation (4.6) and the numerical confirmation, we conclude that low-lying
Dirac-modes have little contribution to the Polyakov loop, and are not essential for confinement,
while these modes are essential for chiral symmetry breaking. This conclusion indicates no direct
one-to-one correspondence between confinement and chiral symmetry breaking in QCD.

Since the relation (4.6) is correct in the presence of dynamical quarks and also at finite density,
it is interesting to investigate Eq.(4.6) in full QCD simulations and at finite baryon density.

Our results suggest some independence between chiral symmetry breaking and color confine-
ment, which may lead to richer phase structure in QCD. For example, the phase transition point
can be different between deconfinement and chiral restoration in the presence of strong electro-
magnetic fields, because of their nontrivial effect on chiral symmetry [21].

As a future work, it is interesting to investigate the Polyakov-loop fluctuation, which is recently
found to be important in the QCD phase transition [22]. It is also meaningful to compare with other
lattice QCD result on importance of infrared gluons to confinement, i.e., confinement originates
from the low-momentum gluons below 1.5GeV in Landau gauge [23].

In any case, the research for the direct relation between confinement and chiral symmetry
breaking would give a new direction in the theoretical study of nonperturbative QCD.
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