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Quarks and gluons in a magnetic field Peter Watson

1. Introduction

In this talk, we shall discuss the problem of quarks in an external magnetic field1. The topic of
fermions in the presence of a magnetic field, especially a strong magnetic field, has attracted con-
siderable attention recently (see Ref. [2] for a recent review) and the primary focus is on magnetic
catalysis – the observation that the fermion condensate is increased by the magnetic field. Chiral
symmetry breaking in the presence of a magnetic field has, however, been studied for quite some
time: early studies looked at, for example, the Gross-Neveumodel [3, 4, 5] and quantum electro-
dynamics (QED) [6, 7]. The solution to the Dirac equation with an external magnetic field leads
to the appearance of Landau levels and this forms the basis ofthe so-called Ritus eigenfunction
method [8, 9] for describing the problem. It is argued that inQED with large magnetic fields, the
lowest Landau level dominates the chiral symmetry breaking[6, 7]. Here, we consider the case
of quantum chromodynamics (QCD), i.e., quarks. In contrastto the electrons in QED (at least
for physical values of the coupling), the quarks experiencedynamical chiral symmetry breaking
even in the absence of the magnetic field by virtue of the strong interaction. As will be shortly
demonstrated, the expansion in terms of Landau levels is notdirectly applicable in this context and
a summation is required – it is necessary to consider the caseof small magnetic fields. However,
for quarks, the strength of the magnetic field should be judged relative to the scale of the strong
interaction and what is described by the ‘small’ field limit turns out to include the estimated fields
present in noncentral heavy-ion collisions [10] (which areusually thought of as being very large).

2. Ritus eigenfunction method

Throughout these proceedings, we shall use the notation andconventions of Ref. [1]. We
consider quarks in the presence of a uniform magnetic field,~B = Bê3, and for simplicity, restrict
to the caseh ≡ QB≥ 0, whereQ is the electromagnetic charge of the quark in question. The
electromagnetic gauge potential associated with the magnetic field is chosen asA0 = 0,~A = Bx1ê2

and is minimally coupled in the quark component of the actionto give the Dirac operator

D−m= ı∂µγ µ −hγ 2x1−m. (2.1)

The tree-level proper two-point function,Γ(0), is defined by

Γ(0)(x,y) = ı[D−m]δ (x−y), (2.2)

whereas the corresponding tree-level propagator,S(0), is the solution of

ı[D−m]S(0)(x,y) = δ (x−y). (2.3)

As is well-understood from quantum mechanics, the presenceof a uniform magnetic field in the
Dirac equation leads to the introduction of Landau levels, with Hermite functions as eigenfunctions.
The various Landau levels are intimately connected to the spin states. Further, the presence of the
electromagnetic gauge potential is such that translational invariance is broken. The problem of

1The talk is based on work done in the early stages of writing Ref. [1]: for a full account of the material and results
(including further results obtained after the workshop hadtaken place), we refer the reader to the article.
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fermions in a magnetic field was studied extensively by Ritususing eigenfunction methods [8, 9].
The tree-level proper two-point function (the expression for the propagator is similar) can be written
(in our notation [1]) as

Γ(0)(x,y) =
∞

∑
n=0

∫

d3 p̃
(2π)3 E(x; p̃,n)Γ(0)(p,n)E(y; p̃,n), (2.4)

wherep̃µ = (p0,0, p2, p3), pµ = (p0,0,0, p3), and the discrete indexn = 0,1, . . . labels the Landau
levels. (E) E is the so-called (conjugate) Ritus matrix, given by

E(x; p̃,n) = h1/4e−ıp̃·x [

ψn−1(ε)Σ+ + ψn(ε)Σ−]

. (2.5)

In the above, theψn are Hermite functions with argumentε =
√

hx1 + p2/
√

h. The factorsΣ± =
[

1± ıγ 1γ 2
]

/2 are spin projection operators. It can be shown that the Ritus matrices,E andE,
are orthonormal and form a complete set. The idea is to use these matrices as a replacement for
the usual Fourier exponential factorse−ıp·x. The eigenvaluesp andn then replace the standard
momentum space componentspµ . In this space, the tree-level proper two-point function isgiven
by

−ıΓ(0)(p,n) = pµγ µ −
√

2nhγ 2−m. (2.6)

In similar fashion, the tree-level propagator is given by

ıS(0)(p,n) =
pµγ µ −

√
2nhγ 2 +m

p2−2nh−m2+ ı0+
. (2.7)

Let us now demonstrate why the Ritus method cannot be directly applied to the problem of
quarks in a magnetic field. With this approach, the dressed propagator has the general form [1]

S(x,y) =
∞

∑
n=0

∫

d3 p̃
(2π)3 E(x; p̃,n)S(p,n)E(y; p̃,n). (2.8)

In the above, it is assumed that the quark-gluon interactionof the self-energy is not affected by the
presence of the magnetic field (the gluon has no electric charge, so this will be true at leading order),
such that the general form of the propagator has the same formas its tree-level counterpart. Using
the properties of the Ritus matrices, the quark condensate is given by (trace over Dirac matrices)

<qq>= NcTrdS(x,x) = Nc
h

2π

∫

d2p
(2π)2 Trd

{

Σ−S(p,n = 0)+
∞

∑
n=1

S(p,n)

}

. (2.9)

The important point here is the appearance of the pre-factorh (the factorh also appears in all loop
integrals). It arises quite generally because the dressed propagator in the eigenvalue space is a
function of (the two components of)p and discrete indexn instead of four-momentumpµ – the
only scale that can compensate for the change in the dimensions of the integral ish. Naively then,
in the limit h → 0, the condensate (and the self-energy) would vanish. This is clearly not true –
we know full well that chiral symmetry is dynamically brokenfor quarks at zero temperature. The
resolution to this lies in the recognition that the expansion of the two-point functions in terms of
Landau levels has the characteristic behavior of an asymptotic series. To get the correcth → 0
limit, we must first sum the series.
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3. Summation and Schwinger phase

In the case of the tree-level two-point functions, it is known how to sum over the Landau levels
[11, 12]. Let us illustrate this for the proper tree-level two-point function. In the expression for
Γ(0), Eq. (2.4), there arises the following type of integral (τ =

√
hy1 + p2/

√
h, a andb are indices)

Iab =
∫

dp2 eıp2(x2−y2)ψa(ε)ψb(τ). (3.1)

It can be shown that such integrals canalmostbe written in terms of a Fourier integral over trans-
verse momentum components,~pt = (p1, p2,0) and Laguerre polynomials (Lα

m): schematically (see
Ref. [1] for the full expressions)

Iab ∼ eıΦ
∫

d2pt eı~pt ·(~x−~y) f (~pt)exp

{

−
p2

t

h

}

Lα
m

(

2p2
t

h

)

(3.2)

where f (~pt) is a collection of various factors andm,α are combinations of the original indicesa
andb. The “almost” in the previous sentence refers to the appearance of the factor Φ, the Schwinger
phase, which reads here

Φ = −
h
2
(x2−y2)(x1 +y1). (3.3)

This factor encodes the deviations from translational invariance inherent to the presence of the
magnetic field. Expanding Eq. (2.4) in terms of the above integrals Iab and evaluating in terms of
the Laguerre polynomials, the tree-level proper two-pointfunction then reads [1, 11, 12]

−ıΓ(0)(x,y) = eıΦ
∫

d4p
(2π)4 e−ıp·(x−y)e−p2

t /h

×
∞

∑
n=0

2(−1)n
{[

Σ−Ln

(

2p2
t

h

)

−Σ+Ln−1

(

2p2
t

h

)]

(pµγ µ −m)+2L1
n−1

(

2p2
t

h

)

~pt ·~γ
}

.(3.4)

The sums overn are known and one gets the final result

−ıΓ(0)(x,y) = eıΦ
∫

d4p
(2π)4 e−ıp·(x−y) [pµγ µ −m

]

. (3.5)

The only effect of the magnetic field on the tree-level propertwo-point function is the introduction
of the Schwinger phase. The tree-level propagator can be treated in similar fashion (using further
results obtained originally in Ref. [13]) and for smallh the expression reads [1, 11, 12]

ıS(0)(x,y) = eıΦ
∫

d4p
(2π)4 e−ıp·(x−y)

{

pµγ µ +m

p2−m2+ ı0+
+

ıhγ 1γ 2[pµγ µ +m]

[p2−m2+ ı0+]2
+O(h2)

}

. (3.6)

One can see that after summation, the standard tree-level two-point functions emerge ash → 0
(unlike for the Ritus expanded expressions in the last section). However, it is not obvious that one
is the inverse of the other for nonzeroh.
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4. Nonperturbative propagator

In order to solve the quark gap equation, we need to know the connection between the nonper-
turbatively dressed proper two-point function and the propagator. To do this, we take a step back to
the Ritus decomposition in terms of Landau levels. The proper two-point function has the general
form [1]

Γ(x,y) =
∞

∑
n=0

∫

d3p̃
(2π)3 E(x; p̃,n)Γ(p,n)E(y; p̃,n) (4.1)

(as for the propagator, Eq. (2.8), we assume that the magnetic field does not modify the quark-gluon
interaction) and we consider the following decomposition in eigenvalue space

−ıΓ(p,n) = Σ+(pµγ µA−B)+ Σ−(pµγ µC−D)−
√

2nhγ 2E +
√

2nh[Σ+ −Σ−]pµγ µγ 2F, (4.2)

where the dressing functions,A-F are functions ofp2 and n (arguments being suppressed for
brevity). This decomposition allows for different spin contributions with the projectorsΣ± inherent
to the presence of the magnetic field. With the general form, Eq. (2.8), and using the orthonormality
and completeness properties of the Ritus matrices, it is possible to find the corresponding expres-
sion for the propagator in terms of the Ritus decomposition.The expression looks like (writing
only the first term and neglecting the Feynman prescription)

ıS(p,n) = Σ+pµγ µ ∆1C−∆2D
∆

+ . . . , (4.3)

where

∆1 = p2AC−BD−2nhE2−2nhp2F2, ∆2 = 4nhEF+AD−BC, ∆ = ∆2
1− p2∆2

2 (4.4)

(again, see [1] for the full expressions).
We now have to make some approximations to sum over the Landaulevels. The first approx-

imation is to drop the dressing functionF (and the corresponding component in the propagator);
this is justified on the grounds that the accompanying Dirac structure is not present at tree-level or
in the absence of the magnetic field. Given the form, Eq. (4.1), for the proper two-point function,
the integralsIab, Eq. (3.1), can be extracted as for the tree-level case to give an expression similar
to Eq. (3.4) (this also applies for the propagator). The sum over the Landau levels can be done and
gives rise to a new set of dressing functionsÂ-Ê with argumentsp2 andp2

t . The explicit expression
for the dressed proper two-point function is [1]

−ıΓ(x,y) = eıΦ
∫

d4p
(2π)4 e−ıp·(x−y)

[

Σ+(pµγ µ Â− B̂)+ Σ−(pµγ µĈ− D̂)−~pt ·~γ Ê
]

. (4.5)

At tree-levelÂ = Ĉ = Ê = 1, B̂ = D̂ = m. In the absence of the magnetic field (h = 0), we should
see (this will be verified numerically) that the proper two-point function reduces to its standard
covariant form in momentum space:−ıΓ(p) = pµγ µAL −BL, with two dressing functionsAL and
BL (both being functions ofp2).

The propagator, Eq. (4.3) contains nontrivial denominatorfactors, Eq. (4.4), including dressing
functions whose dependence on the Landau levels,n, is nota priori known. To perform the sum,

5
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we now assume that the dressing functionsA-E may be replaced by their counterpartsÂ-Ê before
summing. Further, we expand the denominator factors aroundh = 0. This leads to the following
expression for the propagator at smallh [1]

ıS(x,y) = eıΦ(x,y)
∫

d4p
(2π)4 e−ıp·(x−y)

×
{

1

[p2ÂĈ− p2
t Ê2− B̂D̂+ ı0+]

[

Σ+(pµγ µĈ+ D̂)+ Σ−(pµγ µ Â+ B̂)−~pt ·~γ Ê
]

+
hÊ2

[p2ÂĈ− p2
t Ê2− B̂D̂+ ı0+]2

[

Σ+(pµγ µĈ+ D̂)−Σ−(pµγ µ Â+ B̂)
]

+
(ÂD̂− B̂Ĉ)

[p2ÂĈ− p2
t Ê2− B̂D̂+ ı0+]2

[

−Σ+(pµγ µD̂+ p2Ĉ)+ Σ−(pµγ µ B̂+ p2Â)
]

}

. (4.6)

The above expression reduces explicitly to its tree-level counterpart, Eq. (3.6), and to the standard
covariant gauge form in the absence of the magnetic field. Theapproximations are such that the
connection between the various Dirac structures that appear in the two-point functions due to the
presence of the magnetic field is maintained. To justify the replacement of then-dependent dressing
functionsA-E with the p2

t -dependent functionŝA-Ê, we notice that for dimensional reasons, the
occurrence ofn within the dressing functionsA-E would typically be associated with a factorh
(consider, for example, the tree-level propagator denominator factor:p2−2nh−m2) such that any
n-dependence would be suppressed for small values ofh. Moreover, it is the dynamics of the gap
equation that will decide on the eventualp2

t -dependence of the dressing functionsÂ-Ê.
With Eq. (4.6) for the propagator, the explicit expression for the condensate is given by

<qq>= NcTrdS(x,x)

= −2ıNc

∫

d4p
(2π)4

{

B̂+ D̂

[p2ÂĈ− p2
t Ê2− B̂D̂+ ı0+]

+
hÊ2(D̂− B̂)+ p2(ÂD̂− B̂Ĉ)(Â−Ĉ)

[p2ÂĈ− p2
t Ê2− B̂D̂+ ı0+]2

}

. (4.7)

5. Gap equation

To calculate the nonperturbative quark propagator, we solve the rainbow truncated gap (Dyson-
Schwinger) equation. In configuration space and after resolving the color factors (CF = 4/3 for
Nc = 3 colors), this reads

Γ(x,y) = Γ(0)(x,y)+g2CFγ µS(x,y)γ κWκµ (y,x). (5.1)

We use a dressed gluon interaction of the (Landau gauge) form

ıWκµ(y,x) =
∫

d4q
(2π)4 e−ıq·(y−x) G(q2)

q2 tκµ(q) (5.2)

wheretκµ(q) = gκµ −qµqµ/q2 is the transverse momentum projector. For the dressing function G,
we take either of the two phenomenological forms (in Minkowski space)

g2 G(q2)

q2 = 4π2dexp

{

q2

ω2

}

×

{

q2/ω2, I
−1, II

. (5.3)
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Figure 1: Plot of the dressing functionŝA-Ê evaluated atp2
l = p2

t = 0 as a function ofh for the type I (left
panel) and type II (right panel) interactions. See text for details.

The first of these forms (type I) was used previously [14] to study dynamical chiral symmetry break-
ing and light meson phenomenology: we shall use the parameters ω = 0.5GeV, d = 16GeV−2.
The second form (type II) is a variation of this and is inspired by kernels constructed from lattice
components [15]: for this interaction we useω = 0.5GeV,d = 41GeV−2 (these parameters cho-
sen such that the chiral condensate in the absence of the magnetic field is roughly the same for the
two interaction types). Inserting the nonperturbative forms for the quark propagator, Eq. (4.6), and
proper two-point function, Eq. (4.5), into Eq. (5.1), the Schwinger phase cancels. After Wick rotat-
ing to Euclidean space (p0 → ıp4), one can numerically solve for the various dressing functions (as
functions of two variables,p2

l = p2
3 + p2

4 andp2
t = p2

1 + p2
2). We will consider only chiral quarks.

6. Results

In Fig. 1, we illustrate the effect of the magnetic field on thevarious dressing function for both
types of interaction in the case of chiral quarks. The functions Â-Ê evaluated atp2

l = p2
t = 0 are

plotted as functions ofh. What is clearly seen is the reduction (for both interactiontypes) of the
functionsÂ-Ê to the standard covariant gauge case withAL andBL ash→ 0. It can be explicitly
verified that whenh = 0, the functions for the type I interaction match those obtained in Ref. [14]
(from which the interaction and parameters were taken), confirming that theh→0 limit is respected
in the approximations. Further, it is seen that the qualitative pattern of results is the same for both
types of interaction. This is to be expected because at this level of truncation, the interaction is not
modified by the presence of the magnetic field.

In the absence of the magnetic field and with the parameter sets given in the previous section,
the chiral quark condensate is

<qq>h=0= (−251MeV)3 (6.1)

(for both interaction types). The change in the chiral condensate due to the magnetic field is con-
ventionally expressed in terms of the (dimensionless) relative increment function,r(h), defined
as

r(h) =
<qq>h

<qq>h=0
−1. (6.2)

7
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Figure 2: Plot of the (dimensionless) ratior(h), as a function ofh for type I and type II interactions. See
text for details.

This is plotted in Fig. 2 for both interaction types. It is seen that the condensate increases quadrat-
ically with h for small h and linearly for largeh (the transition occurs at aroundh ≈ 0.3GeV2).
Qualitatively, this agrees with recent lattice results, e.g., Refs. [16, 17, 18, 19, 20] (see also [21]).
However, we should point out that a linear rise for smallh is seen in Ref. [22] (see also M. Müller-
Preussker’s contribution to these proceedings) and for chiral perturbation theory [23]. In Ref. [1], a
more detailed comparison to the lattice data of Ref. [16] wasperformed: it was seen that the small
h quadratic behavior and the position of the transition between the quadratic and linear regimes
is well-reproduced. The position of the transition (h≈ 0.3GeV2) is rather important because this
value coincides with estimates for the maximum magnitude ofthe magnetic fields expected in non-
central heavy-ion collisions [10]. It would thus appear that while the magnetic fields may be large
in such systems, when discussing quarks, such fields are competing with the scales associated with
the strong interaction and it is the ‘small’h behavior of the condensate that is relevant, not the large
h behavior.

It has long been argued (see, e.g., Refs. [6, 7]) that in the fermion gap equation for largeh
(which in the context here means larger than the scale of the strong interaction), the lowest (n = 0)
Landau level of the Ritus decomposition is dominant, such that the system may be described in the
so-called lowest Landau level approximation. In this approximation, the characteristic structure of
the Ritus matrixE, Eq. (2.5), reduces

[Σ+ψn−1(ε)+ Σ−ψn(ε)]
n=0−→ ψ0(ε)Σ−. (6.3)

This has the effect of projecting the quark propagator onto theΣ− spin structures. Having summed
over the Landau levels to obtain the nonperturbative two-point functions (with approximations
tailored to studying the smallh limit), we have no direct access to the individual Landau level
contributions. However, we do see that theΣ− spin structure is dominant. The dressing functions
Ĉ andD̂ correspond to theΣ− spin components in the decomposition Eq. (4.5), whereasÂ andB̂
correspond to theΣ+ components. The ratios (analogue to the standard quark massfunction) B̂/Â
andD̂/Ĉ for the type I interaction and evaluated atp2

l = p2
t = 0 are plotted as a function ofh in

Fig. 3. It is seen that the ratiôD/Ĉ increases dramatically (for the type II interaction, this increase

8
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Figure 3: Plot of the ratios of dressing functionŝB/Â (left panel) andD̂/Ĉ (right panel) evaluated atp2
l =

p2
t = 0 as a function ofh for the type I interaction. See text for details.

is not quite so big) whereas the ratiôB/Â is comparatively stable. The mechanism behind this is
the decrease of the function̂C with increasingh (see Fig. 1). Thus, even with our approximations
tailored to theh→ 0 limit, we see that the spin structures associated with the lowest Landau level
are indeed dominant (at least qualitatively).

7. Summary

We have looked at the chiral quark gap equation under the rainbow truncation, with a phe-
nomenological gluon interaction and in the presence of a constant magnetic field [1]. In the pres-
ence of a magnetic field, the problem can be posed in terms of the Ritus eigenfunction method [8]
(expanding in terms of Landau levels). However, for small magnetic fields relative to the scale of
the strong interaction, such an expansion results in a vanishing quark condensate. To overcome
this, we must sum over the Landau levels. This was done using various approximations and the
gap equation was solved. It is seen that the quark two-point functions and condensate reduce to
their standard covariant gauge forms in the absence of the magnetic field. The condensate rises
quadratically for small magnetic fields and linearly for large fields, in qualitative agreement with
recent lattice results [16, 17, 18, 19, 20]. The transition region between the two types of behavior
lies at roughly the scale associated with the maximum fields estimated to be present in noncentral
heavy-ion collisions [10], such that in the context of QCD, the magnitude of the magnetic field
should be interpreted relative to the scale of the strong interaction.

There are two interesting avenues for future work. Firstly,the case of finite temperature and
chemical potential might be investigated in order to study the phase diagram in the presence of the
magnetic field. Second, unquenching effects should be considered (in this respect, the inclusion of
quark loops to the phenomenological interactions used herewas studied previously in Ref. [24]).
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