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1. Introduction

In this talk, we shall discuss the problem of quarks in anreiemagnetic fiell The topic of
fermions in the presence of a magnetic field, especiallyangtmagnetic field, has attracted con-
siderable attention recently (see Ref. [2] for a recentesgyiand the primary focus is on magnetic
catalysis — the observation that the fermion condensateieased by the magnetic field. Chiral
symmetry breaking in the presence of a magnetic field haseWenvbeen studied for quite some
time: early studies looked at, for example, the Gross-Newedel [3, 4, 5] and quantum electro-
dynamics (QED) [6, 7]. The solution to the Dirac equationhvan external magnetic field leads
to the appearance of Landau levels and this forms the basiedafo-called Ritus eigenfunction
method [8, 9] for describing the problem. It is argued tha®BD with large magnetic fields, the
lowest Landau level dominates the chiral symmetry breal@ng]. Here, we consider the case
of quantum chromodynamics (QCD), i.e., quarks. In conttaghe electrons in QED (at least
for physical values of the coupling), the quarks experiethpgamical chiral symmetry breaking
even in the absence of the magnetic field by virtue of the gtinteraction. As will be shortly
demonstrated, the expansion in terms of Landau levels idireaitly applicable in this context and
a summation is required — it is necessary to consider theafas®mall magnetic fields. However,
for quarks, the strength of the magnetic field should be jddgéative to the scale of the strong
interaction and what is described by the ‘small’ field limitris out to include the estimated fields
present in noncentral heavy-ion collisions [10] (which aseally thought of as being very large).

2. Rituseigenfunction method

Throughout these proceedings, we shall use the notatiorcameentions of Ref. [1]. We
consider quarks in the presence of a uniform magnetic figld,Bé&;, and for simplicity, restrict
to the caseh = QB > 0, whereQ is the electromagnetic charge of the quark in question. The
electromagnetic gauge potential associated with the nizgied is chosen ad® = 0, A = Bx&
and is minimally coupled in the quark component of the actogive the Dirac operator

D—m=1d,y* —hy®q —m. (2.1)
The tree-level proper two-point functioR(?, is defined by

FO(x,y) =1D—md(x—y), (2.2)
whereas the corresponding tree-level propag&8, is the solution of

1D —mS9(x,y) = 3(x—y). (2.3)

As is well-understood from quantum mechanics, the preseheeuniform magnetic field in the
Dirac equation leads to the introduction of Landau levelt#) Wermite functions as eigenfunctions.
The various Landau levels are intimately connected to thestptes. Further, the presence of the
electromagnetic gauge potential is such that transldtiornariance is broken. The problem of

IThe talk is based on work done in the early stages of writingy [RE for a full account of the material and results
(including further results obtained after the workshop teen place), we refer the reader to the article.



Quarks and gluons in a magnetic field Peter Watson

fermions in a magnetic field was studied extensively by Ritsiag eigenfunction methods [8, 9].
The tree-level proper two-point function (the expressiarttie propagator is similar) can be written
(in our notation [1]) as

0 . d3~ . . ~
MO0 =3 [ GasEe BT (EY B, 2.4

wherep” = (po, 0, p2, P3), P* = (Po, 0,0, p3), and the discrete index=0,1,... labels the Landau
levels. E) E is the so-called (conjugate) Ritus matrix, given by

E(x B,n) = hY*e"P*[yn_1(6)Z" + ¢n(e)z7]. (2.5)

In the above, they, are Hermite functions with argumeat= v'hx; + po/vh. The factorss* =
[1i |y1y2] /2 are spin projection operators. It can be shown that thesRitatricesE andE,
are orthonormal and form a complete set. The idea is to use tmatrices as a replacement for
the usual Fourier exponential factags'P*. The eigenvaluep andn then replace the standard
momentum space componemi. In this space, the tree-level proper two-point functiogiigen
by

—1r9(p,n) =p,y* - v2nhy?2—m (2.6)

In similar fashion, the tree-level propagator is given by

H_/2nhy? 4+ m
1S9 () = ¥ y.om
p? —2nh—m2 +10,

(2.7)
Let us now demonstrate why the Ritus method cannot be dirapiplied to the problem of
guarks in a magnetic field. With this approach, the dresseplagator has the general form [1]

S
S(x,y) = ; / (Zn)gE(x, p,MS(p,NE(Y; B,n). (2.8)

In the above, it is assumed that the quark-gluon interaaifdhe self-energy is not affected by the
presence of the magnetic field (the gluon has no electrigehab this will be true at leading order),
such that the general form of the propagator has the sameda®ita tree-level counterpart. Using
the properties of the Ritus matrices, the quark condensa®wen by (trace over Dirac matrices)

<_>—NTrS(xx)—N1/ﬂTr Z‘S(_n—0)+m8(_n) (2.9)
A= NeTraS6X) =Neg [ 52 T p,n= n;p, : :

The important point here is the appearance of the pre-féwtihre factorh also appears in all loop
integrals). It arises quite generally because the dressguhgator in the eigenvalue space is a
function of (the two components of) and discrete index instead of four-momenturp# — the
only scale that can compensate for the change in the dinreneidhe integral i$). Naively then,

in the limit h — 0O, the condensate (and the self-energy) would vanish. Shitearly not true —
we know full well that chiral symmetry is dynamically brokésr quarks at zero temperature. The
resolution to this lies in the recognition that the expansibthe two-point functions in terms of
Landau levels has the characteristic behavior of an asyioeries. To get the corrett— O
limit, we must first sum the series.
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3. Summation and Schwinger phase

In the case of the tree-level two-point functions, it is kmdwow to sum over the Landau levels
[11, 12]. Let us illustrate this for the proper tree-levebtpoint function. In the expression for
0, Eq. (2.4), there arises the following type of integra{ v/hy; + p2/v/h, a andb are indices)

lp = /d P2 P20 Y2) g (£) i (T). (3.1)

It can be shown that such integrals @mostbe written in terms of a Fourier integral over trans-
verse momentum componeng,= (pi, p2,0) and Laguerre polynomiald {): schematically (see
Ref. [1] for the full expressions)

> >
IabNe""/dzpte'f’t'(xWf(ﬁ)exp{—%}L% (%) (3.2)

where f () is a collection of various factors amd a are combinations of the original indices
andb. The “almost in the previous sentence refers to the appearance of thar facthe Schwinger
phase, which reads here

= —g(xz—w)(xl +y1). (3-3)

This factor encodes the deviations from translational riavece inherent to the presence of the
magnetic field. Expanding Eq. (2.4) in terms of the abovegirais |, and evaluating in terms of
the Laguerre polynomials, the tree-level proper two-phinttion then reads [1, 11, 12]

4
_|r(0)(x’y) — e'qJ/(;l—s)‘"e_'p'(x_y)e_plz/h
T

[zt (2) -zt (2)] - st (B o7 e

The sums oven are known and one gets the final result

d*p o
0009 = [ pmgze N [y i @9

The only effect of the magnetic field on the tree-level praper-point function is the introduction
of the Schwinger phase. The tree-level propagator can beettén similar fashion (using further
results obtained originally in Ref. [13]) and for smhalihe expression reads [1, 11, 12]

4 u thyly2[p, v# +m
|S<°)(X,y):e'¢/ d*p elp(xY){ Puy” +m . y Yy [Puy ]+ﬁ(hz)}. (3.6)

(2n)? P—MP+10; | [P—nP+10.]2

One can see that after summation, the standard tree-leegbdmt functions emerge ds— 0
(unlike for the Ritus expanded expressions in the last@@ctHowever, it is not obvious that one
is the inverse of the other for nonzeno
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4. Nonperturbative propagator

In order to solve the quark gap equation, we need to know theegdion between the nonper-
turbatively dressed proper two-point function and the pgator. To do this, we take a step back to
the Ritus decomposition in terms of Landau levels. The prowe-point function has the general

form [1]
oo 3x
"09)= 3 [ (s 06BN (E( B0 @1)

(as for the propagator, Eg. (2.8), we assume that the madiedti does not modify the quark-gluon
interaction) and we consider the following decompositioigenvalue space

—IF(p,n) == (p,y*A—B)+ 2 (P,y#C—D) — V2nhy’E + vV2nhiz" — 7 |p,y*V°F, (4.2)

where the dressing functiong-F are functions ofp? and n (arguments being suppressed for
brevity). This decomposition allows for different spin ¢xbutions with the projector&® inherent

to the presence of the magnetic field. With the general formqn(Z8), and using the orthonormality
and completeness properties of the Ritus matrices, it isilplesto find the corresponding expres-
sion for the propagator in terms of the Ritus decompositibhe expression looks like (writing
only the first term and neglecting the Feynman prescription)

AC—-AD

R (4.3)

IS(p,n) = Z P, y*
where
A1 = P?AC— BD — 2nhE? — 2nhp?F2, A, = 4nhEF+AD—BC, A= A2 —p?A3 (4.4)

(again, see [1] for the full expressions).

We now have to make some approximations to sum over the Ldedels. The first approx-
imation is to drop the dressing functidh(and the corresponding component in the propagator);
this is justified on the grounds that the accompanying Ditacire is not present at tree-level or
in the absence of the magnetic field. Given the form, Eq. (4ot )the proper two-point function,
the integraldap, EQ. (3.1), can be extracted as for the tree-level case wagivexpression similar
to Eqg. (3.4) (this also applies for the propagator). The suer the Landau levels can be done and
gives rise to a new set of dressing functiga& with argument$? and p?. The explicit expression
for the dressed proper two-point function is [1]

4
—IF(xy) = €? / (275)46""(”) (= (Puy*A-B)+Z (py*C-D)—p-VE].  (4.5)
Attree-levelA=C=E =1,B=D = m. In the absence of the magnetic fiett=¢ 0), we should
see (this will be verified numerically) that the proper twairg function reduces to its standard
covariant form in momentum spaceil (p) = pyy*AL — B, with two dressing functiong_ and
B, (both being functions op?).

The propagator, Eq. (4.3) contains nontrivial denomingtctors, Eq. (4.4), including dressing
functions whose dependence on the Landau lewels, nota priori known. To perform the sum,
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we now assume that the dressing functiésE may be replaced by their counterpaﬁtsé before
summing. Further, we expand the denominator factors arbuad. This leads to the following
expression for the propagator at snialll]

4
|S(X7y) — e|¢(X~Y)/(c21—p4€|p‘(XY)

)
1 A~ A PN -
= ——— st HC+D)+3~ HA+B)— - VE
X{[_pZAC—ptZEZ—BD+|O+] [ (Dﬂy + )+ (puy + ) pt y ]
hE? A A I
= ——— >t (p,y*C+D) -2 (p,y*A+B
“PAC e b o (P CHDI mZ (RyIALE)]

N (AD — BC)
[P?AC — p2E2 — BD + 10,2

[T (P, "D +7°C) + = (P y'B+PPA)] } . (4.6)

The above expression reduces explicitly to its tree-legahterpart, Eq. (3.6), and to the standard
covariant gauge form in the absence of the magnetic field. appeoximations are such that the
connection between the various Dirac structures that appehe two-point functions due to the
presence of the magnetic field is maintained. To justify émacement of the-dependent dressing
functionsA-E with the p2-dependent functiond-E, we notice that for dimensional reasons, the
occurrence oh within the dressing functioné-E would typically be associated with a factbr
(consider, for example, the tree-level propagator denatuoirfactor:p? — 2nh— m?) such that any
n-dependence would be suppressed for small valués bforeover, it is the dynamics of the gap
equation that will decide on the eventyg+dependence of the dressing functidhE.

With Eq. (4.6) for the propagator, the explicit expressionthe condensate is given by

<0g>= NcTrgS(x, x)
. A4 - Y 2/A ~

——2|Nc/ d p4{ . B+D +hE (_D B) ) + PA(AD — BC)(A— C)}. @.7)
(2m)* | [p?AC — pPE2—BD + 10, ] [P?AC — p2E2 — BD + 10,2

5. Gap equation

To calculate the nonperturbative quark propagator, weedblk rainbow truncated gap (Dyson-
Schwinger) equation. In configuration space and after vesplthe color factors@ = 4/3 for
N. = 3 colors), this reads

F(xy) = FO(x,y) + Cr yHS(%, Y)Y Wiy (, X).- (5.1)

We use a dressed gluon interaction of the (Landau gauge) form

d*a __qy-x G(@)
W1 (Y. X) :/We iy X)Tt”‘(q) (5.2)
wheret,, (0) = gk — Juu /¢ is the transverse momentum projector. For the dressindiumG,
we take either of the two phenomenological forms (in Minkkivgpace)

> 2.2
o’ éc;) 4n2dexp{q} {q_/(lu’lll. (5.3)
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Figure 1: Plot of the dressing functionsE evaluated a'p|2 = p? = 0 as a function oh for the type | (left
panel) and type Il (right panel) interactions. See text fetads.

The first of these forms (type I) was used previously [14]talgtdynamical chiral symmetry break-
ing and light meson phenomenology: we shall use the parasnete- 0.5GeV,d = 16 GeV 2.
The second form (type 1) is a variation of this and is inspiby kernels constructed from lattice
components [15]: for this interaction we uge= 0.5GeV,d = 41GeV ? (these parameters cho-
sen such that the chiral condensate in the absence of thesti@fjeld is roughly the same for the
two interaction types). Inserting the nonperturbativerfeifor the quark propagator, Eg. (4.6), and
proper two-point function, Eq. (4.5), into Eq. (5.1), theh@inger phase cancels. After Wick rotat-
ing to Euclidean spacep§ — 1p4), one can numerically solve for the various dressing famgti(as
functions of two variablesp? = p3 + p3 and p? = p? + p3). We will consider only chiral quarks.

6. Results

In Fig. 1, we illustrate the effect of the magnetic field on¥aeous dressing function for both
types of interaction in the case of chiral quarks. The fuomstiA-E evaluated ap? = p? =0 are
plotted as functions dfi. What is clearly seen is the reduction (for both interactigpes) of the
functionsA-E to the standard covariant gauge case witrandB_ ash — 0. It can be explicitly
verified that wherh = 0, the functions for the type | interaction match those otetdiin Ref. [14]
(from which the interaction and parameters were taken)joimg that then — 0 limit is respected
in the approximations. Further, it is seen that the qualaggbattern of results is the same for both
types of interaction. This is to be expected because ataid bf truncation, the interaction is not
modified by the presence of the magnetic field.

In the absence of the magnetic field and with the parametgeigsedn in the previous section,
the chiral quark condensate is

<qg>h-o= (—251MeV)® (6.1)

(for both interaction types). The change in the chiral coisdée due to the magnetic field is con-
ventionally expressed in terms of the (dimensionless)ivelancrement functiony(h), defined

as <qg>
r(h) = ag>n

L 6.2
<qd>n=o0 6.2
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Figure 2: Plot of the (dimensionless) ratigh), as a function oh for type | and type Il interactions. See
text for details.

This is plotted in Fig. 2 for both interaction types. It is sékat the condensate increases quadrat-
ically with h for smallh and linearly for largeh (the transition occurs at arourd~ 0.3Ge\?).
Qualitatively, this agrees with recent lattice resultg, ,eRefs. [16, 17, 18, 19, 20] (see also [21]).
However, we should point out that a linear rise for srhali seen in Ref. [22] (see also M. Mller-
Preussker’s contribution to these proceedings) and foalghérturbation theory [23]. In Ref. [1], a
more detailed comparison to the lattice data of Ref. [16] pexformed: it was seen that the small
h quadratic behavior and the position of the transition betwihe quadratic and linear regimes
is well-reproduced. The position of the transitidna 0.3Ge\?) is rather important because this
value coincides with estimates for the maximum magnitudb®magnetic fields expected in non-
central heavy-ion collisions [10]. It would thus appeart tivhile the magnetic fields may be large
in such systems, when discussing quarks, such fields areetimmgpvith the scales associated with
the strong interaction and it is the ‘smallbehavior of the condensate that is relevant, not the large
h behavior.

It has long been argued (see, e.g., Refs. [6, 7]) that in titeid@ gap equation for largk
(which in the context here means larger than the scale ofttbegsinteraction), the lowesh& 0)
Landau level of the Ritus decomposition is dominant, suahttie system may be described in the
so-called lowest Landau level approximation. In this agpnation, the characteristic structure of
the Ritus matrixg, Eqg. (2.5), reduces

5 Wn1(8) + = tn(e)] =2 go(e)= . 6.3)

This has the effect of projecting the quark propagator dm@t spin structures. Having summed
over the Landau levels to obtain the nonperturbative twiotpiunctions (with approximations
tailored to studying the smah limit), we have no direct access to the individual Landaielev
contributions. However, we do see that ffie spin structure is dominant. The dressing functions
C andD correspond to th&™ spin components in the decomposition Eq. (4.5), whefeasdB
correspond to th& " components. The ratios (analogue to the standard quarkfomastion) I§/A
and I5/(§ for the type | interaction and evaluatedpﬁt: p? = 0 are plotted as a function @fin
Fig. 3. It is seen that the ratlﬁ/é increases dramatically (for the type Il interaction, timisrease
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Figure 3: Plot of the ratios of dressing functioéjA (left panel) andf)/é (right panel) evaluated 41;2 =
p? = 0 as a function oh for the type | interaction. See text for details.

is not quite so big) whereas the raﬁ?qIA is comparatively stable. The mechanism behind this is
the decrease of the functighwith increasingh (see Fig. 1). Thus, even with our approximations
tailored to then — 0 limit, we see that the spin structures associated withdwest Landau level
are indeed dominant (at least qualitatively).

7. Summary

We have looked at the chiral quark gap equation under théaairiruncation, with a phe-
nomenological gluon interaction and in the presence of ateoh magnetic field [1]. In the pres-
ence of a magnetic field, the problem can be posed in term&dRitius eigenfunction method [8]
(expanding in terms of Landau levels). However, for smalgrnedic fields relative to the scale of
the strong interaction, such an expansion results in a hagisguark condensate. To overcome
this, we must sum over the Landau levels. This was done ugrigus approximations and the
gap equation was solved. It is seen that the quark two-pamttions and condensate reduce to
their standard covariant gauge forms in the absence of tlygmetia field. The condensate rises
guadratically for small magnetic fields and linearly forgarields, in qualitative agreement with
recent lattice results [16, 17, 18, 19, 20]. The transitiegion between the two types of behavior
lies at roughly the scale associated with the maximum fiedtismated to be present in noncentral
heavy-ion collisions [10], such that in the context of QCbe tmagnitude of the magnetic field
should be interpreted relative to the scale of the stroreyaction.

There are two interesting avenues for future work. Firgtlg case of finite temperature and
chemical potential might be investigated in order to studyghase diagram in the presence of the
magnetic field. Second, unquenching effects should be deresi (in this respect, the inclusion of
quark loops to the phenomenological interactions usedwasestudied previously in Ref. [24]).
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