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Abstract 

 We model collective monopole excitations (i.e., 0 excited states) in nuclei as oscillations in the 
nuclear radius.  Assuming a monopole-intrinsic product wavefunction and transforming the many-particle 
shell-model Schrodinger equation accordingly, we obtained a Schrodinger equation that is a sum of 
monopole and intrinsic parts and a cross term that couples these parts.  To fully account for the coupling 
between the monopole and intrinsic motions, we have applied a constrained variational method to the 
monopole-intrinsic Schrodinger equation to resolve it into two coupled time-reversal invariant cranking-
type Schrodinger equations, one for the monopole oscillations and another for the intrinsic motion.  For a 
harmonic oscillator mean-field potential, the equations are solved for the cranked parameters  including 
the energy.  The monopole frequency is determined from an energy-weight sum rule and the cranked 
equations.  The impact of the monopole constraint on the intrinsic system is also investigated 
approximately.  The excitation energy of the first excited 0  state is calculated and compared with that 
observed experimentally in the light nuclei.   
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1. Introduction 

Light nuclei exhibit first excited 0+ states with an excitation energy between 1 and 20          
MeV , which decreases with the mass number A.  There has been a number of theoretical studies 
of these states for some of the light nuclei using various methods (refer to [1,2,3] for the 
relevant literature).  However, the physical nature of these excitations are not yet fully 
understood at least in some of the nuclei.  Previously [1], we modeled the monopole excitations 
in nuclei as oscillations in the nuclear radius in two dimensional space by transforming the 
many-particle Schrodinger equation to the nuclear radius co-ordinate.  We determined the 
excitation energy using the underlying dynamical su(1,1) algebra.  In this article, we generalize 
the previous study to three dimensions and use a variational method to derive two coupled self-
consistent cranking-type Schrodinger equations, one of the monopole and another for intrinsics 
motions.  The monopole oscillation frequency is determined from these equations and an 
energy-weighted sum rule.  

2. Derviation of coupled monopole and intrinsic Schrodiner equations 

We use a nuclear product wavefuction according to the ansatz: 
     ( ) ( )niF R x                        (1) 

where F  is the monopole oscillation wavefunction of the nuclear radius 

2 2 2 2

1 1

( )
A A

n n n n
n n

R r x y z
 

     , and   is a rotationally invariant intrinsic wavefunction of the particle 

coordinates ( 1, 2,...A, i 1, 2,3)nix n   and subject to the constraint: 0
R




 (refer to [2] for more 

detail).  Transforming the many-particle Schrodinger equation according to Eq. (1), we obtain: 
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where 
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1

1
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A,

n j n j
n,j n j n j

B x x
x x

  
     
 and   is the reduced energy, defined on the right-hand 

side of Eq. (2).  In Eq. (2), we have replaced the particle-particle interaction by its Hatree-Fock 

mean-field potential, commonly chosen to be the shell-model harmonic oscillator potential osV̂ , 

which we have partitioned into the following form: 

     2 2 2 2 2
2

1 1

2 A A

os m m s m
m m

M
V̂ b r b R b r

 

      


           (3) 

where M
b





 and 1 341 /A  .  In this article, we set sb b .  The monopole frequency mb  is 

determined in Section 5. 
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3. Derivation of self-consistent cranking model for coupled monopole-intrinsic 
 motion  

 We now take the expectation of Eq. (2) with respect to F  and   and apply the Rayleigh-
Ritz variational method to the resulting equation subject the wavefunction normalization and 
energy minimization * * 0F        to obtain: 
  

   
2

2 2 2
2

1

4
A

R m os s n
n

d d
R b R F t b r F

dR dR
   



   
        

  
          (4) 

    2 2 2 2
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 
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           (5) 
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a t t b F R F b r   


                 (6) 

where  a B   , 4os

d
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dR
   , 2
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os n
n

t  
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 
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2

2
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d
t F R F

dR

 
  

 
.    

 Eq. (6) is obtained from the expectation of either Eq. (4) or (5).   Simultaneous solution of 
Eqs. (4), (5), and (6) determines the three parameters  , a , and 

os .  Eqs. (4) and (5) may be 

viewed as a microscopic, self-consistent, cranking Schrödinger equations for the monopole and 
intrinsic motions respectively, with the cranking parameters a  and 

os being dynamical 

variables determined self-consistently by the two motions.  Another consequence of the self-
consistency is that Eqs. (4) and (5) are time-reversal invariant because a  and 

os are dynamical 

variables, which must be chosen to have real values because the operators d dR  and B  

associated with a  and 
os are real and non-hermitian.  These features require us to choose real 

(and not unitary) solutions of Eqs. (4) and (5).  These features are improvements over the 
conventional phenomenological cranking models [4,5,6] where the cranking parameters are 
constant numbers and hence the models violate time-reversal invariance.  Eq. (4) is a 
microscopic, self-consistent, and arbitrary-amplitude quantum generalization of the 
phenomenological, semi-classical Bohr Hamiltonian for the vibrational motion of a spherical 
nucleus [7].  This connection becomes more transparent when R is identified with the Bohr 
vibrational parameter 2 . (Refer to [2] for a more detail discussion of these and other features of 

the model.)  
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4. Self-consistent solutions of Eqs. (4), (5), and (6) 
 Real eigenfuctions and eigenvalues of the differential Eqs. (4) and (5) are obtained from the 
literature.  These eigenfunctions are related to respectively confluent hypergeometric or 
Kummer and harmonic oscillator functions, with the restriction that 1a  to ensure vanishing of 

certain quantities on the system boundaries (refer to [2] for a more detail).  The corresponding 
eigenvlaues are determined to be: 

  2 2

1

2 2
A

os s n m
n

t b r b n a  


     ,   2 2 22 4R m s ost b F R F b               (7)  

 where 
3

1

1

2

fn ,

k
n ,k

n


   
 

  is the total oscillaltor particle occupation number and fn is the Fermi 

level oscillator quantum number.  Using these eigenfunctions and their generating functions, we 
determine the quantities: 
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where 
    

   
 0

1 .... 22 !

1 2 .... 1 !

n

n
k

a a a n kn

a a a n n k

   


    B .  

 Combining Eqs. (6), (7), and (8), we determine the following expressions. 
The total energy of the combined system is: 

    2 22 4 2 2
2
n

s os mb b n a          
 

B
           (9) 

For 0n  with n 2B : 
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



 
   
 
 

        (10) 

For 1n  with n 2aB : 

     2os mb  , mb
a

b


          (11) 

From Eq. (9), the excitation energy of the first excited 0 state is naturally defined by: 

                2 2 1 0 1 0
1 0

2 2 2m

n n n nb
E n n

M M b b

   
 

       
               (12) 
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5. Determination of monopole frequency mb  using sum rule and constrained 

 intrinsic system 

 To obtain a prescription for the monopole frequency mb , we substitute in succession the 

eigenfunctions F and   for the eigenstates  , the Hamiltonians in Eqs. (4) and (5) for H, and R 

for the operator Â  in the energy-weighted sum-rule formula: 

      
2

0 0

1
0 0 0 0 0

2o o
ˆ ˆ ˆ ˆ ˆE E A E E A A A,H ,A

 

          
 

          (13) 

Thereby we thereby obtain the formula: 

    
2 2

( 0)

( 0) 4 ms os

a n

bb n








 
          (14) 

for mb .  Substituting Eq. (10) into Eq. (14), we obtain 
2 1mb






 .  This formula yields 

unrealistically low values for mb .  To obtain a more realistic value of mb , we have 

approximately imposed the constraint 0
R




 on the intrinsic wavefunction   in the form of 

the expectation (i.e., the first moment) of the constraint and included it in the formulation in 
Sections 2 to 3 using the method of Lagrange multiplier and first-order perturbation theory.  For 
4
2 He , we have cast the results of this analysis into the following convenient form for the 

quantities in Eqs. (7) and (8):      

       2 1 08 2 22 4.
R m s ost b F R F b      , 

2 1.17

2 2 4

s
os

s os

b
t

b









, 

0 8
2

2 2
1 4

.A

n
n s os

r
b

 





         (15) 

Using Eq. (15) and the steps given in Section 4, we obtain: 

    

1 2
2 2 2 2 2

2
2 2 2

2 2

2 4 4
( 0) 1 1 ( 0) 2 1 1

( 1) 2 ( 1)

m s s
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m
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b b b
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b b

b
n b a n

b b

 
 







   
          
   
   

   


     (16) 

where 1 08.  .  From Eqs. (14) and (16), we obtain  

     0 52.
mb b             (17)   

In this article, we use Eq. (17) also for the other light nuclei because the predictions in this 
article are of exploratory nature and more rigorous study will be given elsewhere.   
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6. Preliminary assessment of model for light nuclei 
 Although the main objective of the analysis in this article is the derivation of the 

microscopic, quantal, self-consistent cranking model given in Sections (2) to (5),  we have 

performed a preliminary scoping calculation of the excitation energy of the first excited 0 state 

in the light nuclei in the range 120A  .  Using Eqs. (15), (16), and (17) and the values of 

1 341 /A  and 
3

1

1

2

fn ,

k
n ,k

n


   
 

 , we have computed the excitation eneryg mE  in        

Eq. (12).   The results are presented in Table 1.  Table 1 shows that, except for  4
2 He  and 12

6 C , 

the model significantly overpredicts the excitation energy because these nuclei are deformed in 

their first excited 0 states and, hence, each of these states forms either a member of 

quadrupole vibrational triplet or the band head of rotational band.  The model ignores 

nuclear deformation.  The good agreement for 4
2 He  and 12

6 C  may be accidental because 

of the approximations used to include the intrinsic constraint and the absence of the 
residual interaction.   

7. Concluding remarks 

 We have modeled monopole excitations, manifested in the excited 0 states, in light 
nuclei as oscillations in the nuclear radius.  By transforming the many-particle 
Schrodinger equation accordingly and using a monopole-intrinsic product nuclear 
wavefunction and a variational principle, we have derived coupled, self-consistent 
monopole-intrinsic, cranking-type, Schrodinger equations, which are time-reversal 
invariant, unlike the conventional phenomenological Inglis-type cranking equations.  
For a harmonic mean-field potential, these equations are solved for the cranking 
parameters including the energy eigenvalues.  The monopole frequency is determined 
using an energy-weighted sum rule and an approximate imposition of the first moment 
of the monopole constraint on the intrinsic system.  Preliminary application of the 
model shows that, except for 4

2 He  and 12
6 C , it significantly overpredicts the excitation 

energy of the first excited 0 states due to the neglect of nuclear deformation. Work is in 
progress to improve the prediction for spherical and deformed nuclei by: implementing the 
intrinsic constraint more accurately and including the residual two-body interaction, more 
realistic shell model mean-field potential such as Nilsson's and pairing interaction, center of 
mass motion, and nuclear deformation. The residual interaction introduces particle-hole 
excitations components in the intrinsic wavefunction.  Indeed, it has been shown [3] 
using generator co-ordinate method that such 4 particle-4 hole excitations are necessary 
to obtain good predictions for monopole excitation in 16

8 O . 
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Table 2. Predicted ( mE ) and Observed ( expE ) first excited 0 state excitation energy in light nuclei 
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Nucleus 

Ang. 
mom./parity 

Multi-
polarity 


mb  

a  
0 1n / n   

os
  

0 1n / n   

(MeV)mE  

(% overprediction) (MeV)

expE
 

4
2 He  0

 0E  0.3656 1.657/2.38  0 47/0 73. .  20.3 (1%) 20.1 
12
6 C  0

 0E  0.1605 2 .3 2 /5 3 5.  0 1 4/0 .3 2.  8.2 (6%) 7.7 

16
8 O  0

 0E  0.1337 2 .5 3/6 3 5.  0 .1 1/0 2 7.  6.9 (13%) 6.1 

28
14 Si  0

 0E  0.0866 3 .0 9 /9 5 3.  0 .0 6/0 .1 7  4.9 (-1%) 4.97 

32
16 S  0

 0E  0.0789 3 2 3/1 0 3 9. .  0 .0 5/0 .1 6  4.6 (21%) 3.8 

40
20Ca  0

 0E  0.068 3 46/11 94. .  0 .0 4/0 .1 4  4.1 (21%) 3.4 

60
28 Ni  0

 0E  0.0496 4 0/1 5 .9 7.  0 .0 3/0 .1 0  3.4 (48%) 2.3 
62
28 Ni  0

 0E  0.0485 4 04/16.32.  0 .0 2/0 .1 0  3.3 (57%) 2.1 
70
32 Ge  0

 0E  0.0445 4 2 1/1 7 .67.  0 .0 2/0 .0 9  3.2 (167%) 1.2 

90
40 Zr  0

 0E  0.037 4 5 9/2 0 9 8. .  0 .0 2/0 .0 7  2.8 (56%) 1.8 
114
48 Cd  0

 0/ 2E E  0.0308 4 .9 8 /2 4 8 2.  0 .0 1/0 .0 6  2.6 (136%) 1.1 
116
50 Sn  0

 0/ 2E E  0.0304 5 01/25 11. .  0 .0 1/0 .0 6  2.6 (44%) 1.8 

120
52 Te  0  

0 /2

decay to final

states  
 

0.0297 5 0 7/2 5 .6 8.  0 .0 1/0 .0 6  2.5 (127%) 1.1 


