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The only two-nucleon bound state system occurring in free space is the deuteron, constituted by

a proton-neutron pair. Although the neutron-neutron interaction is attractive, its strength is not

deep enough to allow for a bound state in the form of a dineutron. However, this picture changes

drastically when the interacting neutrons are immersed in nuclear matter. In this contribution we

address dinucleon properties as implied by the Brueckner-Hartree-Fock approximation for infinite

symmetric nuclear matter at zero (T = 0) and finite temperature. Special emphasis is given to

dinucleon formation in the search of self-consistent single-particle fields, leading to novel features

for low-density nuclear matter, i.e. mass densities of the order of 1011−12 g cm−3. Searches have

been carried out at Fermi momenta in the range 0 < kF ≤ 1.75 fm−1 using the Argonne v18 bare

nucleon-nucleon potential. At T = 0, two distinct solutions meeting self-consistency are found

with overlapping domains in the interval 0.130 fm−1 ≤ kF ≤ 0.285 fm−1. Effective masses as

high as three times the nucleon mass are found in the coexistence domain, in resemblance to

Heavy Fermions in strongly correlated systems. Self-consistent solutions for the single-particle

fields at finite temperature are also investigated and preliminary results shall be presented.
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1. Introduction

The Brueckner, Bethe and Goldstone (BBG) theory for interacting nucleons has played an

important role in the quest for a unified description of nuclear many-body phenomena based on

the bare interaction between nucleons [1, 2]. At negative energies in the Brueckner-Hartree-Fock

(BHF) approximation it has been extensively applied to the study of saturation properties of nuclear

matter, including the equation of state over the whole range of isospin-asymmetry. At positive

energies, as in the case of nucleon scattering from nuclei, the g matrix in the BHF approximation

has been used to model density-dependent effective interactions between the projectile and target

nucleons [3, 4].

Nuclear matter properties have been investigated within various frameworks such as micro-

scopic quantum statistical approach and generalized relativistic mean field models [5], self-consistent

Green’s function theory [6, 7], quasiparticle gas models for the study of light nuclei in supernova

envelopes [8], among many others. However, there is no retrievable reference known to these

authors where dinucleon bound state correlations are explicitly treated, in conjunction with the

self-consistent search of single-particle (sp) fields within the BHF approximation, particularly at

very low densities. In this work we address this issue by providing an explicit account for dinu-

cleon bound states in the 1S0 and 3S1−
3D1 channels, expressed as isolated poles on the real axis

below the continuum threshold, while seeking self-consistency within the continuous choice.

2. Framework

In BBG theory for symmetric nuclear matter the g matrix depends on the density of the

medium, characterized by the Fermi momentum kF , and starting energy ω [2]. To lowest order

in the BHF approximation, when only two-body correlations are taken into account, the g matrix

satisfies

g(ω) = v+ v
Q

ω + iη − ĥ1 − ĥ2

g(ω) , (2.1)

with v the bare interaction between nucleons, ĥ1(ĥ2) the sp energy of nucleon 1(2), and Q the Pauli

blocking operator. The solution to this equation enables the evaluation of the mass operator

M(k;E) = ∑
|p|≤kF

〈 1
2
(k−p)|g

K
(E + ep)|

1
2
(k−p)〉 , (2.2)

where K is the total momentum of the interacting pair, K = k+p, and

ep =
p2

2m
+U(p) , (2.3)

the sp energy defined in terms of an auxiliary field U . The nucleon mass m is taken as the average

of proton and neutron masses. In the BHF approximation the sp potential is given by the on-shell

mass operator,

U(k) = ℜeM(k;ek) , (2.4)

a self-consistency requirement which can only be achieved iteratively. In the continuous choice

this condition is imposed to all momenta k [2].
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A standard procedure to solve the non-linear system of Eqs. (2.1-2.4) is by iterative feed-

backing, where the auxiliary field U is initially unknown. Cycles begin with a tentative guess for

U(k), which allows a solution for g from Eq. (2.1) for the specified values of ω and K. The

series of cycles can be started with U0(k) = 0, to obtain all g-matrix elements needed for the

evaluation of M in Eq. (2.2). The real part of M defines a new sp field, U1, which becomes the

guess for a new cycle. The procedure is iterated until differences between consecutive solutions

for U meet some convergence criterion. Although this self-consistent scheme works well at normal

densities, convergence may become extremelly difficult –if not unfeasible– as kF diminishes below

∼0.8 fm−1. In this low-density regime, instabilities develop in the evaluation of the on-shell mass

operator. We have noted that self-consistency at low densities can be reached by diminishing the

number of mesh points for the Fermi-motion integral in Eq. (2.2). With this numerical compromise

it is possible to avoid sudden fluctuations of the integrands, but the actual convergence of the

integrals becomes dubious.

Aiming to obtain reliable self-consistent solutions for the sp mean fields over a wide density

regime as well as accounting explicitly for dinucleon bound states, a refinement of numerical tech-

niques becomes crucial to control instabilities during the iterative process. The evaluation of the

sp fields, U(k) = ℜeM(k,ek), involves the summation of on-shell g-matrix elements while keeping

the momentum of one of the particles below the Fermi surface. Explicitly,

M(k,ek) = ∑
α

nα

∫ kF

0
p2d p

∫ 1

−1
du gα

k+p(
|k−p|

2
, |k−p|

2
;ω) . (2.5)

Here u= k̂ · p̂, the energy ω is evaluated on-shell (ω = ek+ep), α denotes spin, isospin and angular

momentum states, and nα accounts for their degeneracy and for geometric factors.

For most NN states the above integral involves well behaved integrands. However, extra mea-

sures becomes much needed for the 1S0 and 3S1−
3D1 states. This is because during the evaluation

of the momentum integral in Eq. (2.5), exceedingly large g-matrix elements stemming from NN

bound states in these S and D channels do appear. Such bound states occur when

det[1− vαΛK(ω)] = 0 , (2.6)

where ΛK(ω) denotes the particle-particle propagator in Eq. (2.1) and vα denotes the bare potential

in a particular NN channel. Any matrix element with starting energy ω and total momentum K near

such bound states will lead to large contributions. In actual calculations these singularities can be

controlled with the regularization

g(ω)→ g(ω)×
(∆ω)2

(∆ω)2 +η2
,

where ∆ω = ω −ω∗
K . ω∗

K is the starting energy corresponding to a bound state of total momen-

tum K, and η is reasonably small real parameter. We have used η = 0.1 MeV, less than 5% of

the deuteron binding energy in free space. The Fermi-motion integral is performed following an

adaptive trapezoidal quadrature to ensure convergence.
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3. Results

Self-consistent solutions for U(k) were obtained in the range 0 < kF ≤ 1.75 fm−1 using the

Argonne v18 bare internucleon potential [9]. We have included all NN partial waves up to J = 7, the

total angular momentum. This criterion was maintained at all densities in order to cross-check our

findings near the saturation point and to rule out any subtle variation of the calculated observables as

caused by a discrete (sudden) change of in the number of partial waves. With these specifications,

each cycle at which U is calculated may involve of the order of half a million matrix inversion

operations.

Different strategies were followed in searches for the self-consistent solutions for the cases

0 < kF < 0.35 fm−1 and kF ≥ 0.35 fm−1. In the second case, we calculated the solutions at Fermi

momenta kF = 0.35(0.05)1.75 fm−1, obtaining unique stable self-consistent solutions. In contrast,

searches in the range 0 < kF < 0.35 fm−1, required a specific strategy due to the fact that two

different self-consistent solutions are found for the same value of kF . These two solutions, meeting

self-consistency criteria, shall be referred to as coexisting solutions. To proceed systematically, a

first class of solutions was obtained with ascending kF , in steps of ∆kF = 0.01 fm−1. At each kF , the

self-consistent loop starts with an U(k) borrowed from the converged solution at the previous kF .

This way, starting at kF = 0.01 fm−1, we obtain a class of self-consistent solutions characterized

by a monotonically increasing binding energy per nucleon, B/A, as a function of kF . This class of

solutions is denoted as UI = {UkF
| 0≤ kF ≤ kβ}, with kβ the maximum (critical) Fermi momentum

at which self-consistency is achievable in ascending order. To resolve kβ , self-consistent solutions

were explored with increasing kF in steps ∆kF as small as 0.001 fm−1, obtaining kβ = 0.285 fm−1.

Beyond this point the iteration loops indefinitely, with fluctuations in U(k) unable to settle below

0.04 MeV, the maximum fluctuation required for convergence. A more refined characterization

of the solutions near and beyond kβ may require a more specific approach. A similar procedure

was adopted for decreasing kF , starting from the converged solution at kF = 0.35 fm−1 and going

down in steps of 0.01 fm−1. As in the previous case, the continuity of B/A is monitored and we

seek the minimum critical value of kF , denoted by kα , at which self-consistency is reachable with

decreasing kF . This second class of solutions is denoted UII = {UkF
| kF ≥ kα}. For these solutions

we have found kα = 0.130 fm−1, with a resolution of 0.01 fm−1.

In Fig. 1 we show surface plots for the self-consistent fields U(k) for solutions I and II in

the range 0.05 fm −1≤ kF ≤ 0.35 fm−1. These solutions define distinct surfaces at densities cor-

responding to kα ≤ kF ≤ kβ . The upper sheet, representing UI , features a moderate repulsion at

k = 0, with a shallow ditch in the vicinity k ∼ 4kF/3. On the other hand the sheet for UII starts

with negative mean fields at k = 0, showing a moderate decrease up to k ∼ kF and then followed

by a steep increase to reach U(k)→ 0. In both cases the slope of the self-consistent fields become

negative at the Fermi surface, a feature that causes nucleon effective masses to be greater than the

bare nucleon mass. Here we evaluate

m∗

m
=

[

1+
m

k

∂U(k)

∂k

]−1

, (3.1)

at k = kF .

In Fig. 2 we plot the ratio m∗/m as function of kF for the two solutions. Dark and light

diamonds denote UI and UII , respectively. We note that in the coexistence range the unbound
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Figure 1: Self-consistent solutions at zero temperature for U(k) as function of of k and kF . The upper sheet

represents UI and the lower one corresponds to UII .
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Figure 2: Effective mass m∗/m as function of kF for solutions I and II.

solutions I yield effective masses as high as 3, consistent with the structure of the solutions for

k ∼ kF , in resemblance to Heavy Fermions in strongly correlated systems [10].

In Fig. 3 we plot the binding energy per nucleon for symmetric nuclear matter, BI/A and

BII/A, as obtained from solutions UI and UII , respectively. Here each small dot denotes an actual

calculation, while the continuous curves represent suitable parametrizations. We note that the

two solutions exhibit distinct behaviors as functions of kF in their respective domains, without

intercepting each other in the range [kα ,kβ ]. While solution I resembles a correlated Fermi gas

(FG) in a metastable state, solution II represents a condensed medium featuring a minimum at the

point of nuclear saturation. From the inset for low densities we also note that solution I departs

from an uncorrelated FG above kα , the Fermi momentum where solution II begins. This departure

features a moderate repulsiveness relative to a free FG.

We have also investigated the occurence of dinucleon bound states at finite temperature. In

this case we follow a naive extension of the BHF approach, where the density of states at a given
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Figure 3: Calculated binding energy per nucleon B/A for symmetric nuclear matter as a function of the

Fermi momentum kF . The solid blue (red) curve corresponds to solution I (II) based on power fits. Small

circles denote results from actual self-consistent runs. The inset shows a close up for the coexisting solutions

together with the Fermi gas result.

momentum k is given by

n(k) = Θ(eF − ek)→
1

1+ e(ek−µ)/T
, (3.2)

with eF the Fermi energy and µ the chemical potential [11]. The latter is found self-consistently

by imposing

ρ = 2

∫

d3k

(2π)3
n(k) , (3.3)

to match the density of nucleons. Additionally, the Pauli blocking operator in Eq. (2.1) is modified

accordingly

Q = Θ(k1 − kF)Θ(k2 − kF)→ [1−n(k1)][1−n(k2)] . (3.4)

All other numerical procedures used in this case are the same as in the case of zero temperature.

Results for the self-consistent solutions are shown in Fig. 4. The application here is for kT =

0.2 MeV, displaying also coexisting solutions for kF above 0.2 fm−1. Eventually, finite temperature

calculations will provide us with a critical temperature, above which coexistence breaks down. Our

current estimates suggest this is below 1 MeV. We note that the calculations we report in this work

are computationally very intensive, and the strategy of reaching convergence to generate solutions

in ascending/descending kF prevents us from resorting to parallel runs.

4. Concluding remarks

We have investigated dinucleon formation in homogeneous symmetric nuclear matter at T = 0

and T > 0. In this work it has been crucial to treat the sp solutions U(k) without resorting to

the effective-mass approximation, a consideration which has led us to identify coexisting self-

consistent sp fields in the range 0.13≤ kF ≤ 0.285 fm−1. Work in progress also suggests coexisting
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Figure 4: Self-consistent sp fields as function of k and kF at finite temperature (kT = 0.2 MeV).

solutions at finite temperature, but further research is needed to pin down the temperature at which

coexistence disappears. Although not discussed above, studies at zero temperature for the particle-

particle wavefunctions yield bound states with sizes much greater than the internucleon distance,

stressing the importance of long-range correlations. This fact has been inferred from the evaluation

of mean radii, which can reach values as large as ∼ 100 fm. A more detailed report of these findings

shall be published elsewhere.
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