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We present recent developments on the topic of the integrand reduction of scattering amplitudes.
Integrand-level methods allow to express an amplitude as a linear combination of Master In-
tegrals, by performing operations on the corresponding integrands. This approach has already
been successfully applied and automated at one loop, and recently extended to higher loops. We
describe a coherent framework based on simple concepts of algebraic geometry, such as multi-
variate polynomial division, which can be used in order to obtain the integrand decomposition
of any amplitude at any loop order. In the one-loop case, we discuss an improved reduction al-
gorithm, based on the application of the Laurent series expansion to the integrands, which has
been implemented in the semi-numerical library NINJA. At two loops, we present the reduction
of five-point amplitudes in N = 4 SYM, with a unitarity-based construction of the integrand. We
also describe the multi-loop divide-and-conquer approach, which can always be used to find the
integrand decomposition of any Feynman graph, regardless of the form and the complexity of the
integrand, with purely algebraic operations.
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1. Introduction

Scattering amplitudes are analytic functions of the kinematic variables. The investigation of
the multi-particle factorization properties fulfilled at their singular points [1–5], lead to important
achievements in the development of methods for their computation. Integrand reduction methods,
developed for one-loop diagrams [6, 7] and recently extended to higher loops [8–12], allow to
express scattering amplitudes as linear combinations of Master Integrals (MI’s), by exploiting the
knowledge of the analytic and algebraic structure of their integrands.

The integrand of a Feynman diagram is a rational function of the components of the loop
momenta, namely a polynomial numerator sitting over a set of quadratic loop denominators corre-
sponding to internal propagators. Any integrand can be written as a combination of fundamental, ir-
reducible contributions. These contributions are integrands characterized by a subset of the original
denominators and an irreducible polynomial residue for numerator. The multiple-cut conditions,
which put these loop-momenta simultaneously on-shell, can be viewed as projectors isolating the
corresponding residue. The residues have a universal process-independent parametric form. Some
of the unknown process-dependent coefficients appearing in this parametrization can be identified
with the ones which multiply the Master Integrals.

In Refs. [10, 11] the determination of the residues at the multiple cuts has been formulated
as a problem of multivariate polynomial division, and solved at any loop order using algebraic-
geometry techniques. The most general parametric form of a residue is indeed the most general
remainder of a polynomial division modulo the ideal generated by the corresponding subset of
denominators. The unknown coefficients of this parametrization can then be computed, within the
fit-on-the-cut approach, by evaluating the integrand on values of the loop momenta such that the
loop denominators which identify the residue are on-shell, as traditionally done in the one-loop
case. In this paper, we also present a two-loop example in N = 4 SYM.

The evaluation of the coefficients of the MI’s of a one-loop amplitudes can be improved by
performing a Laurent expansion with respect to the variables which are not fixed by the cut condi-
tions, as we showed in Ref. [13]. The algorithm has been implemented in the semi-numerical C++
library NINJA, which proved to be faster and numerically more stable than the original integrand-
reduction approach. The library has been used for the computation of NLO QCD corrections to
Higgs boson production in association with a top quark pair and a jet [14].

One can also perform the full integrand decomposition of any multi-loop amplitude by means
of purely algebraic operations, within what we call the divide-and-conquer approach [12]. In
this case, the residues are generated by performing successive polynomial divisions between the
numerator and the denominators of a diagram. Because of its wider range of applicability we may
consider the latter a more general method for the integrand decomposition of loop integrals.

2. Integrand reduction formula

An arbitrary `-loop graph represents a d-dimensional integral of the form∫
ddq1 · · ·ddq` Ii1···in , Ii1···in ≡

Ni1···in
Di1 · · ·Din

, (2.1)
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where i1, . . . , in are (not necessarily distinct) indices labeling loop propagators. The numerator
N and the denominators Di are polynomials in a set of coordinates z, which correspond to the
components of the loop momenta with respect to some basis. Let P[z] be the ring of all polynomials
in such coordinates. Every set of indices {i1, . . . , in} defines the ideal

Ji1i2···in ≡ 〈Di1 , . . . ,Din〉 =

{
n

∑
k=1

hk(z) Dik(z) : hk(z) ∈ P[z]

}
. (2.2)

The goal of the integrand reduction is finding a decomposition of the form

Ii1···in ≡
Ni1···in

Di1 · · ·Din
=

n

∑
k=0

∑
{ j1··· jk}

∆ j1··· jk
D j1 · · ·D jk

where the residues ∆ j1··· jk are irreducible polynomials, i.e. polynomials which contain no contribu-
tion belonging in the corresponding ideal Ji1···in .

The numerator N of the integrand can be decomposed by performing the multivariate poly-
nomial division modulo a Gröbner basis Gi1···in of Ji1···in as

Ni1···in = Γi1···in +∆i1···in =
n

∑
k=1

Ni1···ik−1ik+1···inDik +∆i1···in (2.3)

in terms of a quotient Γi1···in and the remainder ∆i1···in . The properties of Gröbner bases ensure that
the remainder is irreducible, therefore it is identified with the residue of the multiple cut Di1 = · · ·=
Din = 0, as suggested by the notation. The quotient Γ belongs instead to the ideal J , hence in the
last equality of Eq. (2.3) it has been written as combination of denominators. Substituting Eq. (2.3)
in Eq. (2.1), we obtain the recursive formula [11, 12]

Ii1···in =
n

∑
k=1

Ii1···ik−1ik+1···in +
∆i1···in

Di1 · · ·Din
. (2.4)

Eq. (2.4) expresses a given integrand in terms of an irreducible residue sitting over its denominators
and a sum of integrands corresponding to sub-diagrams with fewer loop propagators. Hence, the
recursive application of this formula ultimately yields the full decomposition of any integrand in
terms of irreducible residues and denominators, as in Eq. (2).

The existence of such a recursive formula proves that the integrand decomposition can be
extended at any number of loops and the most general parametrization of a residue ∆i1···in can be
identified with the most general remainder of a polynomial division modulo the Gröbner basis
Gi1···in . Within the fit-on-the-cut approach the unknown coefficients of this parametrization can be
found by evaluating the numerator on the solutions of the multiple cut Di1 = · · · = Din = 0. This
method has been traditionally used at one loop, and recently applied to higher-loop amplitudes as
well [8, 9, 15–17].

In Ref. [11], we applied the recursive formula in Eq. (2.4) to the most general one-loop
integrand. This allowed to easily derive the well know OPP decomposition for dimensionally-
regulated one-loop amplitudes [6, 7], as well as its higher-rank generalization for effective and
non-renormalizable theories [13] implemented in XSAMURAI (which extends the SAMURAI li-
brary [18]) and recently used in the computation of NLO QCD corrections to Higgs boson produc-
tion plus two [19] and three jets [20] in gluon fusion, in the infinite top-mass approximation.
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3. Integrand-Reduction via Laurent Expansion with NINJA

An improved integrand-reduction method for one-loop amplitudes was presented in [13], elab-
orating on the the techniques proposed in [21, 22]. This method allows to compute the coefficients
of the Master Integrals, through the systematic application of the Laurent series expansion on the
integrand, with respect to one of the free components of the loop momenta which are not fixed by
the on-shell conditions.

Within the original integrand reduction algorithm [18, 23, 24], the determination of the un-
known coefficients requires to sample the numerator on a finite subset of the on-shell solutions,
subtract from the integrand all the non-vanishing contributions coming from higher-point residues,
and solve the resulting linear system of equations. Since in the asymptotic limit both the integrand
and the higher-point subtractions exhibit the same polynomial behavior as the residue, with the
Laurent-expansion method one can instead identify the unknown coefficients with the ones of the
expansion of the integrand, corrected by the contributions coming from higher-point residues. In
other words, with this approach the system of equations for the coefficients becomes diagonal and
the subtractions of higher-point contributions can be implemented as corrections at the coefficient
level which replace the subtractions at the integrand level of the original algorithm. The parametric
form of this corrections can be computed once and for all, in terms of a subset of the higher-point
coefficients.

This reduction algorithm has been implemented in the semi-numerical C++ library NINJA,
which has been interfaced with the package GOSAM [25–29] for automated one-loop computa-
tions. Since the integrand of a loop amplitude is a rational function, its semi-numerical Laurent
expansion has been implemented as a simplified polynomial division between the numerator and
the denominators.

The input of the algorithm implemented in NINJA is the numerator cast in four different forms,
which can be easily and very quickly generated from the knowledge of the analytic dependence of
the integrand on the loop momentum (e.g. from the analytic expression of the numerator generated
by GOSAM). The first form corresponds to a simple evaluation of the numerator as a function of the
loop momentum, while the others return the leading terms of a parametric Laurent expansion of the
numerator. NINJA computes the parametric solutions of each multiple cut, performs the Laurent
expansions via a simplified polynomial division between the (expansions of the) numerator and the
denominators, and implements the subtractions at the coefficient level in order to get the unknown
coefficients. These are then multiplied by the corresponding MI’s. NINJA implements a wrapper
of the ONELOOP library [30, 31] which caches the values of computed integrals and allows for
constant time lookups from their arguments. The library can also be used for the reduction of
higher-rank integrands where the rank of a numerator can exceed the number of denominators
by one. The simplified fit of the coefficients and the subtractions at coefficient level make the
algorithm implemented in NINJA significantly lighter, faster and more stable than the original.

The first new phenomenological application of NINJA has been the computation of NLO QCD
corrections to Higgs boson production in association with a top quark pair and a jet [14]. The pos-
sibility of exploiting the improved stability of the new algorithm has been especially important for
the computation of the corresponding six-point virtual amplitude, given the presence of two mass
scales as well as massive loop propagators which make traditional integrand reduction algorithms

4



P
o
S
(
R
A
D
C
O
R
 
2
0
1
3
)
0
1
2

Multi-loop Integrand Reduction via Multivariate Polynomial Division Tiziano Peraro

−

1

2 3

4

5

1

2

3

4

5
5

1

2

3

4

−

1

2 3

4

5

1

2

3

4

5

−

1

2

3

4

5

=

=

=

1

2

3

4

5

1

2 3

4

5

1

2 3

4

5

Figure 1: The eight- and seven-pole unitarity cuts of the pentabox graph, which are used to determine the
corresponding residues.
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Figure 2: Graph representation of the Jacobi Identity at four points

numerically unstable. Indeed, for the highly non-trivial process under consideration, only a number
of phase-space points of the order of one per mill were detected as unstable. All these points have
been recovered using the tensorial reduction provided by GOLEM95 [32, 33].

4. Application to Two-Loop Scattering Amplitudes in N = 4 SYM

The integrand reduction within the fit-on-the-cut approach has been combined with the color-
kinematic duality [34] in order to construct the two-loop five-point amplitude for N =4 super Yang-
Mills (sYM) [35].

The inputs for the integrand decomposition are the products of the trees to be sewn along the
multiple cuts and the parametric forms of the residues. The former can be computed by adopting
the super-amplitude formalism [36], while the latter were classified in [16].

The reduction of this amplitude begins from the eight-pole cuts, which are maximum cuts
[11], and terminates after determining the residues at the seven-pole cuts. The absence of lower
cuts is compatible with the property that N = 4 sYM integrands are linear in the loop-momenta.
Representative steps of the reduction are given in Fig. 1.

Once the reduction is completed, one can equivalently construct a numerator function for the
parent eight-denominator topologies, which captures the whole structure of the scattering ampli-
tude. These numerators can be rearranged in a color-kinematic dual form by imposing additional
constraints, referred to as BCJ equations, derived from the kinematic equivalent of the Jacobi Iden-
tity portrayed in Fig. 2. BCJ identities, beyond one-loop, imply a relation between the integrands of
planar and non-planar topologies. The color-kinematic dual numerator for the eight-denominator
planar diagram is represented in the first line of Fig.4. The key equations for the determination of
the new numerators of the planar diagrams are depicted in Fig. 3, where one may notice the rising
of a seven-denominator diagram, whose identification was not needed in the unitarity decompo-
sition. In order to disentangle the contributions to the seven-pole cuts we use the BCJ equations
which only involve the planar topologies displayed in the last two lines of Fig. 4. The obtained
results are in agreement with [37].
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Figure 3: Each seven-pole unitarity cut is split into two contributions as indicated by the colors. The green
diagram represents the new seven-denominator topology arising from the BCJ equations.
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Figure 4: The first line shows the decomposition of the numerator N of the planar topology, in terms of
residues of eight-pole cuts and seven-pole cuts multiplied by the corresponding denominators Di. The last
two lines show the BCJ equations which are used to disentangle the seven-pole unitarity cuts.

5. Divide-and-conquer approach

The direct application of the integrand reduction formula of Eq. (2.4) on the numerator of an l-
loop graph allows to perform the integrand decomposition algebraically by successive polynomial
divisions, within what we call the divide-and-conquer approach [12]. At each step, the remainders
of the divisions are identified with the residues of the corresponding set of denominators, while
the quotients become the numerators of the lower-point integrands appearing on the r.h.s. of the
formula, allowing thus to iterate the procedure. In this way, the decomposition of any integrand is
obtained analytically, with a finite number of algebraic operations, without requiring the knowledge
of the varieties of solutions of the multiple cuts, nor the one of the parametric form of the residues.

This algorithm has been implemented in a PYTHON package, which can perform the decom-
position of any numerator using FORM [38] and MACAULAY2 [39] for the algebraic operations.
It has been applied to the examples depicted in Fig. 5. Despite their simplicity, these show the
broadness of applicability of the method which is not affected by the presence of massive propaga-
tors, non planar diagrams, higher powers of loop denominators or higher-rank contributions in the
numerator.

6. Conclusions

We described a coherent framework for the decomposition of Feynman integrals, which can
be applied at any loop order, regardless of the complexity of the integrand, the number of external
legs or the presence of higher powers of loop denominators. This framework allows to easily derive
well known results at one-loop order and extend them to higher loops.
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Figure 5: Examples of diagrams reduced using the divide-and-conquer approach.

In the one-loop case, we showed how the knowledge of the analytic structure of the integrands
on the multiple cuts, and in particular their asymptotic behavior on the on-shell solutions, can be
used to improve the analytic and semi-analytic reduction with the Laurent expansion method. Its
implementation in the C++ library NINJA provided a considerable gain in the speed and in the
stability of the reduction.

At higher loops we presented the application of the fit-on-the-cut approach to 5-point ampli-
tudes in N =4 super Yang-Mills (sYM), with a unitarity-based construction of the integrands on the
multiple cuts. We also described the application of the divide-and-conquer approach, which allows
to perform the full decomposition with purely algebraic operations, without requiring the knowl-
edge of the algebraic variety defined by the on-shell solutions. We applied it to simple examples,
some of which cannot be addressed with other unitarity-based and integrand-reduction methods,
due to the presence of higher powers of loop denominators in the integrands. Since it is based on
the same principles used to constructively prove the existence of the integrand decomposition at all
loops, the divide-and-conquer approach doesn’t have the limitations of other methods and can be
considered a more general integrand reduction algorithm.
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