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1. Introduction: subtraction schemesin the NLO era

It is indisputable that higher order corrections are needed to corraettlygp fully differential
distributions for scattering processes at high precision. The recesuveis of a Higgs boson
([, B], which led to the award of this year’s Nobel prif¢ [3], is a more timiriguing example
that precision physics is indispensable to a correct theoretical intetipretd experimental data
accumulated at present and future colliders. An ideal framework fetaldd comparison between
theoretical predictions and experimental findings are Monte Carlo ees@rgtors. In addition,
especially in recent years many tools have been developed which alldhef¢gsemi-)automated
calculation of higher order corrections. These tools provide the virtwatibutions, whereas the
integration over phase space as well as the calculation of the real emiasieysually performed
by a standard Monte Carlo generator, as e.g. Shffpa [4] or Herwiij+Flje next-to-leading order
(NLO) matching of such higher order calculations to parton showers @sllgouell understood.

The implementation of NLO calculations into numerical tools exhibits a caveat stenfiming
the infrared divergence of real and virtual NLO contributions, whigginate from different phase
spaces: although in the sum of all contributions, the infinite parts exactbekahe behaviour of
the divergence needs to be parametrized, e.g. by infinitesimal reguldtesmplementation of
such regulators into numerical codes can result in large unphysicalrinainencertainties. A way
to circumvent this problem is the introduction of subtraction schemes, whiiciheafly reshuffle
the divergent terms such that a numerically stable evaluation becomesl@dssitontributions
stemming from both Born-type and real-emission kinematics. We here disapesidic scheme
and its properties, which has first been proposeflin [6], using splittingeleas well as mapping
prescriptions which were already suggested in the framework of an iregoarton showef][7] 8,
1. It was further developed for processes with an arbitrary numbénal states in[10], and a
recent review was presented [n][11]. Furthermore, the scheme texgtlyelbeen implemented in
an automated way within the HelacNLO framewdk|[12]. We here largely fotlmvnotation of
[B,[£0,[I1] and only briefly review the setup of the scheme, rather §ing®n newer developments
which have not been presented previously. We equally reemphasizeratiba argument]]0]
which in principle allows for an even further reduction of the scaling.

2. Subtraction Schemes

Higher order subtraction schemes make use of factorization of the readiemisatrix ele-
ment in the soft or collinear limits, leading to the decompositiafiy.1(p)|? — Z¢ @ |.#m(p)|?
[L3,[14.[I5]. HereZ, are the dipoles which contain the respective singularity structure. The sym-
bol ® denotes a correct convolution in colour, spin, and flavour spacepapdire momenta in
(m+ 1)/ m-parton phase space. The subtracted contributions are then given by

oNLO = [do®—do”]| + doA+/ doV (2.1)
m+1 m+-1 m

finite finite
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where

Jn [d0B +daY + [, do*] = / dPSy [r///mwz + [ M| one-toopt ; Y ® \///mF] :

/m , [do"—do] = / dPSni1 [|//zm+1\2 - ; D, ® r//zmrzl , (2.2)

and where/ d PS denotes the integration over the respective phase space, includinghatiessy

and flux factors. The symbotio®, dgV, doR stand for the Born, virtual and real-emission con-
tributions of the calculation, while real-emission subtraction terms are summaszerf*. Since
’%ml’z and |///m]2 live in different phase spaces, their momenta need to be mapped via a map-
ping function. Furthermore, the subtraction teimand its one-parton integrated counterpért

are related by, = [ dé, 7,, wheredé, is an unresolved one-parton integration measure. The
following ingredients therefore define a subtraction scheme: (a) a suitegping from(m+ 1)

to mparton phase space which guarantees energy-momentum consersatielhas on-shellness,

and (b) an efficient parametrization of the one-parton integration medé&pré/Vhile the number

of reevaluations of the underlying Born matrix element for the real emissibtractions in Eqn.
(2.3) is determined by (a), the complexity of the integrated counterterms depar{b). Currently,

two major schemes for NLO subtraction are on the market, namely the Catani-Se{®%) dipole
scheme[[16][_37], and the Frixione-Kunszt-Signer (FKS) subtradtigh [t the scheme discussed
here, we use the splitting kernels of an improved parton shower as adatbie feal emission sub-
traction term$, and we apply a momentum mapping which leads to an overall scaling behaviour
~ N2 for a process withN partons in the final state. The number of matrix element reevaluations
is thereby reduced by a factor proportional to the number of final statielpa of the process with
respect to the CS scheme.

3. Nagy-Soper subtraction: Setup and relation to improved parton shower

We denote four-momenta in the Born-type kinematics by unhatted quantjtieghile the
real emission phase space momenta are denoted by hatted quautitié$al’ state momenta are
labelledp, and p,, whereQ = pa+ pp and withQ? being the squared centre-of-mass energy, with
equivalent relations in the real emission phase space; gengrayels the emitterp;the emitted
parton andpg the spectator.

3.1 Scheme setup

The scheme discussed here uses the splitting kernels of an improvedsieveer [ [B[9] as
a basis for the subtraction terms. We can therefore wiite [7]

| (1B, Thmia)) =t (f— T+ TV AP, TYmen) |2 ({p. T1m). (3.)

Here, | .#,({p, f}ms1)) and| .# ({p, f}m)) denote the matrix elements in real emissiom+(1)
and Born-type 1) phase space and, t, the factorization operators in colour and spin space. For

1This equally promises to facilitate the matching to the improved parton shofveiscussion in|E|1] and references
therein.
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fermionic emitters, the splitting functions are diagonal in helicity space; thexetioe real emis-
sion subtraction terms are directly given by the spin averaged fundtipns- %v[?, with v% being
defined by Eqn. (43) if]6]. In case of gluonic emitters, information on thergpolarization needs
to be retained, and soft/ collinear divergences from interference t&ises In our scheme, these
are treated using dipole partitioning functiohg [B], which redistribute the singularities to contri-
butionsV\/é(lf),V\/[(if), wherepy, px take over the kinematic role of the mother parton in the mapping,
respectively. The subtraction term is then split into a purely collinear araftacsllinear part
(V'Wee — Wi v) = (V'] (Wee —WEX) + (WEK —Wy) [v), where|v), |v') denote the gluon polar-
ization of the mother parton connected to the Born-type matrix element in Eq). Qur specific
choice of the dipole partitioning functions leads to

MWy = W Wiy = amag——— 2PePIPeQ)
(Be-B3) [(Bj - Br) (B~ Q)+ (Be- By) (P Q)]

whereWS is the spin-averaged eikonal factor. All quantities are defined 4% IfL11.

(3.2)

3.2 Final state momentum mapping and scaling behaviour

The improved scaling behaviour of our scheme mainly results from the spew@Efpping be-
tween the real emission and Born-type kinematic phase spaces for fireakstaters. For final
state mappings, we use the whole remainder of the event as a spectator intenmmentum
redistributions; therefore, we have

1 . ~ 1-Ar+yy ~ ~ -
Pe = }Té(pzﬁij)—#aéyQ, U= AKK)H,PY, ne {¢j=m+1}, (3.3)
with A(K,K)H, = g4, — Z(Kiitgjk)” + ZK}EZK” ,Wherey, = %.We furthermore introduced

2

Ae(ye,ay) = \/(1+Ye‘)2—4azw, K=Q-p,K=Q-P,a(P.Q = %Q_P;,witth = P+

Pj. Note that it is theglobalmapping for all remaining particles in Eqr._(3.3) that is responsible
for the reduced number of Born-type matrix reevaluations. For the neéigs@éon subtraction terms,
we then obtain the total contribution

da’)(Pa, Po) = daZ?(Pa, Po) +dals’(Pa, Po) + S dozy’ (Pa, Po), (3.4)
{#ab

with the sum over all possible final state emitters. For a specific enpittéris explicitly given by

A N N .
daz’ (Pa, Po) = q):i Z{ [Dyaa(Bi) Sgiaq; + Zogs(Bi) Bga.g; | -#Bomg|*(Pas Po; Pn)
]

+ [ Paag(B)) g0, + Zag(Bi) Oy ] 1-#Bomal”(Pas Pb; pn)}, (3.5)

where®p,,; denotes the flux factér The subtraction terms can be split into collinear and interfer-
ence parts:
A A Il (A A fra & A
P, (P, By) = 231 (B, i) + 5f;,gk#%j).@' (Pes By, i), (3.6)

2The 6f“ﬂ f functions ensure the existence of the respective splittfpgs f, ﬂ- in flavour space.

4
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where 2" (py, Pj, Px) denotes an interference contribution with acting as a spectator. Each of
the contributions in Eqn[(3.6) requires exaatlyeglobal mapping, i.e. the number of mappings
and thereby matrix reevaluations in the real emission subtraction terms bdikave #(/]). This
leads to an overall scaling behaviouer/Z, whereN is the number of final state particles, which
can in principle be improved even further. [n][19], the authors showwliin the MadFKS
environment, a constant scaling behaviour can be achieved,; i.e., famcgipes of processes, the
number of reevaluations of underlying Born-type matrix elements in the relsen subtraction
terms remains constant. This relies on the fact thatamyl phase space can be decomposed into
disjoint partitions that are specified by their behaviour for one of the pafobecoming soft or
collinear to at most one other partpp, Where the sum of all FKS partitions reproduces the whole
phase spacesuch thaty i jje 7es 1) = 1. Here, Zpks is the set of FKS pairs labelled by the
parton indicesi, j) , and.#; are theS-functions [IP] which project out the respective FKS partition
(i, ]). Furthermore, several partitions render exactly the same contribution tm#éhebservable,
and therefore the evaluation of only one of these is sufficient:

do™ ) = Y £ () da ™ (1), (3.7)
(i,))€ Prxs

whereEi(j”“)(r) is the process-dependent symmetry factor that relates the total criss sethe
one evaluated in the partitidin, j), and Zrks now signifies the set of all nonredundant FKS pairs.
In the scheme discussed here, the subtraction term that reflects thgedives of#}; is given by
Egn. (3.6), such that all contributions from the soft/ collinear divetgenf 5, px are transferred

to the interference tern@" (py, i, Pj), corresponding to the singularity structure otidferent
partition, namely.#. All terms in Eqn. [3]6) come with the same mapping, and, as in the FKS
prescription in [IP], only the set of nonredundant contributions néede evaluated, all others
being related by symmetry. Increasing the number of final state gluons thds te a change

in the constanEi(j”“)(r) but does not call for the evaluation of a larger number of nonredundan
contributions, as the number of elementsdfrks remains constant. Therefore, following this
prescription, our scheme equally exhibits a constant scaling behavioen, the number of gluons

in the real emission final state is increased.

3.3 Subtraction termsand integrated counterterms

We devote this subsection to a more detailed discussion of one of the leftutepfirts in the
integrated counterterms that is currently evaluated numerically. The ex@stéfiaite remainders
in these terms is a direct consequence of the modified mapping which leadsnptbeed scaling
behaviour discussed above. Although this constitutes a slight modificatiomesitlect to standard
schemes such as CS and FKS, it poses no impediment for the implementatiorsofieme.

We here present an example of an approximation for one of these intdgpakhis, we focus
on an integral which appears in the final stadg splitting, namely

max _ 2
ls(a) = —/Oy dy[()\ 41y+y) +1] (1“)’\)'”"0, (3.8)

3Note that the notation betvve[19] and this work differs in the fact the@h [ labels the emitted parton that
becomes soft or collinear, while in our case this parton is denotes.byof sake of consistency, we stick to the notation
proposed in EQ] in the above discussion.
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Figure 1. Left: Numerical values fots(a,;) (Eqn. (3.8)), in the range; € [1,20]. Right: Relative error
between numerical value fdg(a,) and fitting functions fory € [1,2] (section I) andy, € [2,20] (section
), given by Egns. (3.9) and (3.10) respectively. We findriflative errors aré (1@5) , thereby well below
typical phase space integration errors. Note that in theeabptot the relative error in section Il has been
multiplied by 10 for better visibility.

whereA = Ay(y, &), Xo(y, &) = %,ymax(ag) = (Var— \/ag—l)z, and all other parameters
are defined in Secti.2. Far = 1, the integral is given bis(1) = % —1; for all other cases,
we use an approximation. We easily find the approximating functions

a w® .
|§ppr°xaf§2(ag) = Zf +(1+a2) 5 Li2(1— Ymax) | +2(ay — 1)? In(1— Yimax)

1
—1-175 13Ymax(1—ar)? — 582 Ymax+ IN Ymax[5+4 (& + 2Ymax — 38 Ymax)] — 15

(ay— 1) (a2 — 2.75128a, + 1.74026

- 3 5 (3.9)
0.24848@7 + 7.10958¢ — 3.111753, — 3.68862
‘ 0.560353
Iapprong a, <20 — 012842
3 (aé) 0.12842+ (a[ _ 0.5781430.974664
aj —28.1242a3 + 240479aZ — 758744a, + 778706 (3.10)

145774a} + 160015a3 — 483927aZ + 6419%, — 390093

Fora, > 20, a similar approximation applies.

Figure[] shows the behaviour of the integral for the ramge [1,20], as well as the relative
errors between the approximation as given in Eqfis] (39),](3.10) anautherically evaluated
integral; we found that the errors afe(10~°) for a; € [1,2], and an order of magnitude smaller
for ay > 2. We want to emphasize that these relative errors are small compared ¢ordhe
typically obtained from the Monte Carlo integration over phase space.

4. Results

As an example, we here present results for the proeéss — 3jets [Ip]. The leading
order contribution is given bg" e~ — qqg, and we include virtual corrections, as well as real
emission processes e~ — qqqq, e" e — qqgg [2Q]. The above real emission contributions
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Figure 2: Left: Total result for differential distributio 5 d%NCLO using both our scheme (labelled NS, red)
and CS (green) dipoles. The standard literature resulirsatausing the CS scheme is completely repro-
duced with the NS dipolesRight: Differenced\cs.ns for real emission (red, upper) and virtual (green,
lower) contributions, showing that especially for I@walues the contributions in the two schemes signifi-
cantly differ. Adding upA™@ 4+ AV gives 0 as expected.

call for (84 10) matrix element reevaluations per phase space point in the C&anf) reeval-
uations in our scheme, respectively. We display our results in terms of theti@uation [20]

cm =3 1-3"—1icj (2p.Q)§2(]2pJQ)} , (8 = 2pi- pj), which fulfills all requirements of a jet

observable and is infrared finite on the integration lefrdl [21].

Figure[? shows that we reproduce the literature result, numerically obtioradp3], and equally
found agreement between implementations of both schemes. We want to emaghasthis is
indeed a non-trivial statement, since tthéferencedbetween the two schemes for both subtracted
real emission as well as virtual contributions are sizeable; thereforeemgnt between the two
schemes on the per mil levgl]10] constitutes a non-trivial validation of chese.

5. Summary

We here reported on some recent progress in the development of ara@eNLO subtrac-
tion scheme for QCD calculations, which uses the splitting functions of an iragnoarton shower
as subtraction kernels. We have briefly discussed the setup, anibdigfibe features leading to an
improved scaling behaviour of our scheme with respect to one of the stesudlatraction schemes.
We focussed on possible further improvements of this scaling behaviong the lines of a pro-
posal which has first been investigated within the MadFKS framework ul®e®r the process
et e~ — 3jets as well as an example of an analytic approximation for one of the fusatibith
is currently evaluated numerically have been presented. Summarizinggarel the scheme dis-
cussed here as a viable alternative to both CS and FKS subtraction. e@anesexhibits a smaller
number of subtraction terms with respect to CS, and does not call foragareptrization of the
phase space for each emitter/ emitted parton pair, as needed in the FKEesdNe believe that
this direction is worthwhile to investigate, and plan to implement this into a genem@bee Monte
Carlo event generator in the near future.
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