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1. Introduction

The discovery of a Higgs boson with a mass of around 125GeV wasa spectacular success
of the Standard Model (SM). Having completed the particle spectrum of the SM, the task is to
scrutinise this model in all details and to search for experimental signals showing deviations from
their SM predictions. This includes the detailed investigation of the observed Higgs boson as well
as precise measurements of all kind of SM processes. For an adequate comparison between theory
and experiment higher-order perturbative corrections areindispensable. This concerns in the first
place QCD corrections, which are typically of the order of several ten per cent or more, and even
next-to-next-to-leading order (NNLO) QCD corrections areneeded for several processes. However,
also electroweak (EW) corrections are mandatory for many processes at the LHC. While they are
often (but not always) small for inclusive observables, they can be enhanced by kinematic effects,
in particular near resonances, or where high-energy scalesmatter, like in tails of distributions. They
can easily reach several ten per cent for energy scales in theTeV region.

In the past years, huge progress has been made in the automation of the calculation of next-to-
leading order (NLO) QCD corrections. Different groups havedeveloped software packages [1, 2,
3, 4, 5, 6, 7, 8] and used them to perform complicated calculations. The efforts have concentrated
mostly on QCD corrections (examples can be found in these proceedings). Recently we have
constructed RECOLA, a generator of one-loop (and tree) amplitudes in the full SM[9, 10], including
EW corrections. It is based on an algorithm which uses recursion relations for the computation of
the coefficients of the tensor integrals [11].

As a first application of RECOLA we have chosen the process pp→ Z+2jets→ l+l−+2jets.
Owing to its large cross section and similar signatures it provides a major background for Higgs-
boson production in vector-boson fusion kinematics and allows to study the systematics for the
H+2jets final state. The dominant NLO QCD corrections ofO(α3

s α2) have been investigated in
Refs. [12], while a subset of EW Z+2jets production has been studied at NLO QCD in Ref. [13].
Electroweak Sudakov corrections have been considered in Ref. [14]. Our aim is the calculation of
the complete EW corrections ofO(α2

s α3).

2. COLLIER, a Fortran library for tensor one-loop integrals

A general one-loop amplitudeδM can be written as

δM = ∑
j

∑
Rj

c
( j,Rj ,Nj )
µ1···µRj

T
µ1···µRj

( j,Rj ,Nj )
, (2.1)

where j runs over all appearing tensor integrals with rankRj and degree (number of propagators)
Nj .

While RECOLA calculates the coefficientsc
( j,Rj ,Nj )
µ1···µRj

, the tensor integrals

T
µ1···µRj

( j,Rj ,Nj )
=

(2πµ)4−D

iπ2

∫

dDq
qµ1 · · ·qµRj

D j,0 · · ·D j,Nj−1
, D j,a = (q+ p j,a)

2−m2
j,a (2.2)

are provided by COLLIER, the Complex One-Loop LIbrary with Extended Regularisations [15, 16,
17, 18]. This library is also used by OPENLOOPS[19, 20].
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COLLIER is a Fortran library for the numerical evaluation of one-loop scalar and tensor inte-
grals appearing in perturbative calculations in relativistic quantum field theory. It provides tensor
integrals with arbitrary rank forN-point functions up to currentlyN = 6, either directly as numer-
ical values for the tensor elementsT

µ1···µRj

( j,Rj ,Nj )
or as numerical values for the invariant coefficients

T
( j,Rj ,Nj )
0...0
︸︷︷︸

2n

i2n+1...iRj
appearing in the covariant decomposition

T
µ1...µRj

( j,Rj ,Nj )
=

[
Rj
2

]

∑
n=0

N−1

∑
i2n+1,...,iRj =1

{g. . .g
︸ ︷︷ ︸

n

p. . . p}µ1...µRj
i2n+1...iRj

T
( j,Rj ,Nj )
0...0
︸︷︷︸

2n

i2n+1...iRj
. (2.3)

The tensor integrals are evaluated as follows: For 1-point and 2-point tensor integrals ex-
plicit numerically stable expressions are used [21]. For 3-point and 4-point functions we employ
Passarino–Veltman reduction along with the tensor-integral reduction methods of Ref. [16] which
are based on expansions in small determinants. Depending onthe specific kinematic configuration
a suitable method is selected for each tensor integral. In this way a numerically stable calcu-
lation is achieved for almost all configurations. Finally 5-point and 6-point tensor integrals are
directly reduced to integrals with lower rank and lower degree using the methods summarised in
Refs. [15, 16].

COLLIER includes a complete set of scalar integrals for scattering processes. These are eval-
uated from analytical expressions as given in Ref. [17, 22].Ultraviolet singularities are regu-
larised dimensionally, soft and collinear singularities can be regularised either dimensionally or
with masses. While complex internal masses, required for unstable particles, are fully supported,
external momenta and virtualities must be real.

COLLIER has a built-in cache system to avoid the recalculation of identical integrals and two
branches that allow for an independent calculation of each integral via two different implementa-
tions and direct numerical cross-checks.

3. Z+2jets production at the LHC

We consider the production of a leptonically decaying Z boson in association with 2 hard jets.
We include diagrams including a resonant Z boson as well as all irreducible background diagrams
leading to thel+l−jj final state.

3.1 Leading-order contributions

At leading order (LO), the production of a leptonically decaying Z boson at the LHC in asso-
ciation with a pair of hard jets is governed by the partonic subprocesses

qi g → qi gl+ l− , (3.1)

qi q̄i → q j q̄ j l
+ l− , qi ,q j = u,c,d,s,b, (3.2)

and their crossing-related counterparts. All partonic processes can be constructed from the three
basic channels ug→ ugl+l−, us→ usl+l−, and us→ dcl+l−. While the mixed quark–gluon (glu-
onic) channels (3.1) contribute to the cross section exclusively at orderO(α2

s α2), the four-quark
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Figure 1: From left to right: Sample tree diagrams for the QCD contributions toqi g → qi gl+ l− and to
qi q̄i → q j q̄ j l+ l−, and the EW contributions toqi q̄ j → q′i q̄

′
j l
+ l−.

channels (3.2) involve LO diagrams of strong as well as of EW nature leading to contributions
of orderO(α2

s α2), O(αsα3), andO(α4). Representative Feynman diagrams are shown in Fig. 1.
Photon induced contributions, which are below 0.05%, have been omitted.

3.2 Setup of NLO calculation

Taking into account all one-loop QCD and EW diagrams, the cross section involves contribu-
tions of ordersO(α3

s α2), O(α2
s α3), O(αsα4), andO(α5). We are interested in the contributions

of O(α2
s α3) which involve NLO EW corrections to the dominant LO contributions of O(α2

s α2)

and NLO QCD corrections to the LO interference contributions ofO(αsα3).
We use the complex-mass scheme [23, 24, 25] to treat resonantZ-boson propagators (see

Fig. 2 left for a sample diagram), i.e. we consistently use the complex masses

µ2
Z = M2

Z− iMZΓZ, µ2
W = M2

W − iMWΓW (3.3)

for the Z and W bosons.
The electromagnetic coupling constantα is defined within theGµ scheme, i.e. we use

α =

√
2GµM2

W

π

(

1− M2
W

M2
Z

)

. (3.4)

This definition takes into account higher-order effects of the renormalisation-group running from 0
to M2

W. Moreover, the renormalisation ofα becomes independent of light quark masses.

3.3 Virtual corrections

The virtual corrections contributing atO(α2
s α3) involve O(1200) diagrams for the ug→

ugl+l− channel, including 18 hexagons and 85 pentagons, and an almost comparable number of
diagrams for the us→ usl+l− channel. The most complicated topologies involve 6-point functions
up to rank 4 (see Fig. 2 right for a sample diagram). Renormalisation is performed within the
complex-mass scheme [24]. As the couplingαGµ is derived fromMW, MZ andGµ , its counterterm
inherits a correction term∆r from the weak corrections to muon decay.

In NLO we neglect all channels involving external bottom quarks. At LO these contributions
are taken into account and contribute at the per-cent level.

3.4 Real corrections

The real EW corrections ofO(α2
s α3) consist of real photon emission from the LO QCD dia-

grams in all subprocesses (3.1), i.e. the processes

qi g → qi gl+ l− γ , (3.5)
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Figure 2: Box diagram involving potentially resonant Z-boson propagators (left) and hexagon diagram
involving a 6-point tensor integral of rank 4 (right).

qi q̄i → q j q̄ j l
+ l− γ , (3.6)

and from real gluon emission contributions in the interferences between LO QCD and EW dia-
grams, i.e. the processes

qi q̄i → q j q̄ j l
+ l−g. (3.7)

The amplitudes can be constructed in exactly the same way as for the LO, but we only take contri-
butions ofO(α2

s α3) into account.

IR divergences of soft or collinear photons and gluons are regularised dimensionally. We
use the Catani–Seymour dipole formalism as formulated in Ref. [26], which we transferred in a
straightforward way to the case of dimensionally regularised photon emission.

The presence of gluons in the final state gives rise to a further type of singularity. In IR-safe
observables quarks, and thus all QCD partons, have to be recombined with photons if they are
sufficiently collinear. Thus, soft gluons can pass the selection cuts if they are recombined with a
hard collinear photon, giving rise to a soft-gluon divergence that would be cancelled by the virtual
QCD corrections to Z+ 1jet+ γ production. Following Refs. [27] we eliminate this singularity
by discarding events containing a jet consisting of a hard photon and a soft partona (a= qi , q̄i ,g)
taking the photon–jet energy fractionzγ = Eγ/(Eγ +Ea) as a discriminator. Finally, we have to
absorb left-over singularities into contributions involving the quark–photon fragmentation function
[28].

3.5 Implementation

The calculation was performed using the amplitude generator RECOLA for all tree-level, one-
loop and bremsstrahlung amplitudes. This generator is interfaced with the tensor-integral library
COLLIER [18]. The phase-space integration is performed by an in-house multi-channel Monte-
Carlo generator [29].

The results have been checked by a second independent calculation based on the conven-
tional Feynman-diagrammatic approach. It uses FEYNARTS 3.2 [30, 31], FORMCALC 3.1 [32]
and POLE [33] for the generation, simplification and calculation of the Feynman amplitudes. The
tensor-integral coefficients are again evaluated by COLLIER, which includes a second independent
implementation of all its building blocks. Finally, the phase-space integration is performed with
the multi-channel generator LUSIFER [34].
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process class σLO [fb] σLO/σLO
tot [%] σNLO

EW [fb] σNLO
EW

σLO −1 [%]

gluonic 17948(4) 77.3 17534(4) -2.31

four-quark 5270.0(5) 22.7 5140(2) -2.46

sum 23218(4) 100 22675(5) -2.34

Table 1: LO cross section for pp→ l+l−+2jets at the 8TeV LHC split into contributions from gluonic and
four-quark channels. The second column provides the LO cross section with integration error on the last
digit in parentheses, the third column contains the relative contribution to the total cross section in per cent,
the fourth column the NLO EW cross section, and in the last column the relative EW corrections.

3.6 Numerical results

We present results for the 8TeV LHC with the input parametersas given in Ref. [9]. Since we
focus on NLO EW corrections, we stick to the LO MSTW2008LO PDFset [35]. For the QCD
factorisation and renormalisation scales we chooseµF = µR = MZ. The scale choice as well as
the actual value for the strong couplingαs plays a minor role for our numerical analysis of EW
radiative corrections.

The jet clustering is performed with the anti-kT algorithm [36] with separation parameterR=

0.4. We require two hard jets and two charged leptons fulfillingthe following requirements

pT,jet > 30GeV, |yjet|< 4.5, pT,l > 20GeV, |yl |< 2.5,

∆Rll > 0.2, ∆Rl jet > 0.5, 66GeV< Mll < 116GeV. (3.8)

for the transverse momenta, rapidities, rapidity–azimuthal angle separation, and invariant mass. In
addition, the photon energy fractionzγ in a jet must be below 0.7.

Using the set-up defined above we find for the cross section theresults shown in Table 1. The
total cross section is dominated by processes with externalgluons, which amount to 77%. For our
set of cuts, the corresponding relative EW corrections are at the level of−2.5% and similar for all
channels.

In Fig. 3 we present results for the differential cross section as a function of the transverse
momentum of the harder jet and of the negatively charged lepton. Both distributions decrease over
five orders of magnitude in the displayedpT ranges. While the four-quark channels dominate for
high pT,j1, their contribution stays at the level of 25% for allpT,l− . The bottom-quark contribu-
tions, which are shown separately, are below 5% and become less important for large transverse
momenta. The electroweak corrections are negative and reach about−20% for pT,j1 ≈ 1TeV and
pT,l− ≈ 600GeV. The large negative corrections result from Sudakovlogarithms in the EW loop
contributions. The (subtracted) real corrections from photon or gluon emission stay below 2%.
We also show the experimental statistical uncertainty corresponding to an integrated luminosity of
20fb−1.

4. Conclusions

We have presented results for theO(α2
s α3) contributions to the production ofl+l−+2jets at

the LHC. These include electroweak corrections to the LO QCDdiagrams and QCD corrections
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Figure 3: Distributions of the transverse momenta of the harder jet j1 (left) and the negatively charged
lepton l− (right) at the 8TeV LHC at LO (black). The central panels showthe relative contributions of
gluonic (red), four-quark (blue) and bottom (magenta, dashed) channels. In the lower panels we show the
total relative corrections (black) fromO(α2

s α3) contributions, the included real photonic (red) and real
gluonic (blue) corrections together with the statistical error (green, dashed).

to the interferences between LO QCD and EW diagrams. The results have been obtained with the
amplitude generator RECOLA and the tensor-integral library COLLIER. The electroweak correc-
tions turn out to be at the level of−2% for inclusive cross sections. In the high-energy tails of
distributions large EW corrections appear which can be attributed to EW Sudakov logarithms.
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