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1. Introduction

All the particles predicted by the Standard Model have bemfitned by experiments, yet
many sectors of this successful theory have to be precisedsiigated. The description of high
energy processes is based on pertubation theory, and setearetical predictions require a de-
tailed understanding beyond Born approximation. At a hadmallider as the LHC, QCD correc-
tions are known to be large, but also electroweak (EW) ctimee can have an important impact.
Indeed the high energies attained by the LHC allow to cotlatd in phase-space regions where the
effects of logarithms of EW origin become sizable. In paiic cases like e.g. Higgs production
in vector-boson fusion the EW corrections can be of the samer®f magnitude as QCD cor-
rections [1]. Finally, photon emission creates mass-sardogarithms which again lead to large
contributions. Therefore a proper theoretical descniptbLHC physics requires next-to-leading-
order (NLO) computations of multiparticle processes (Ville, six, or more external legs) in the
full SM (including EW corrections).

While QCD corrections have been calculated in the last yesnsiany processes, in the EW
sector the situation is less satisfactory. Usually EW @ugs|computations are more involved
than QCD ones and often rely on codes created “ad hoc” to ctergpecific processes, whose
generalization to other processes is tedious. Moreovecdhgputation of NLO corrections for
the elementary scattering is not the end of the story and rotrer issues have to be considered
in hadronic processes (such as multi-channel Monte Caal@soper treatment of real emission,
convolution with the parton distribution functions, partehower, etc.). For this reason the creation
of general and automatized codes for the computation of Naopic matrix elements is highly
desirable. In the past years many groups have concentfa@cfforts to make such calculations
feasible, and a lot of codes have appeared [2, 3, 4, 5, 6, 7itB]ahigh level of automatization
and impressive performances, however restricting theigeaof applicability mostly to the QCD
sector of the SM.

For this reason we have developeddLA, a generator of tree- and one-loop amplitudes in
the full SM [9]. The code overcomes the difficulties in autdiziag efficiently computations based
on Feynman diagrams, choosing an alternative approacthwekiends to one-loop amplitudes the
known recursion relations for tree-level amplitudes. Tdesj originally proposed by Andreas van
Hameren in Ref. [10] for gluonic amplitudes, is to write dnep amplitudes as linear combinations
of tensor integrals and compute recursively the coeffisiefitsuch a decomposition. The tensor
integrals themselves are then computed by linking the co@sternal libraries.

2. Tree-level recursion relations

The tree-level recursive algorithm is inspired by the DySmhwinger equations [11], using
off-shell currents as basic building blocks. Let us consaprocess with. external legs, written in
the formP,+---+P__1+ R — 0, where we select one particle to be the |&s} (vhile the others
are called primary. The off-shell current

/ P
WP, €, By, 1) = n{><>~ (2.1)

is defined as the amplitude maderodf theL—1 primary on-shell particles with labe{s, ..., I}
and the off-shell particld® (carrying colour labeled by’). The off-shellness of the particlé
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(depicted by a dot) implies that its wave function is not itledd and, fon > 1, replaced by its
propagator. The off-shell curremthas a Lorentz structure of a scalar, spinor or vector acagrtdi
the type of particld®. Forn = 1 the off-shell currents of the external legs coincide whitbit wave
...Ip}» Obtained using

the binary notation of Ref. [12]: each external partiglés labeled by the tag numbé&;, = 21
(i.e. Byyy = 1, By = 2, Bygy = 4, Byyy = 8, ...), while the tag number of the internal currents
is simply obtained by summing the tag numbers of the extetnadents contributing to it (for
exampIeB{l’ZA} = B{l} + B{Z} + B{4} =1+2+8=11).

The practical advantage of using off-shell currents is thay can be computed recursively
using the Dyson-Schwinger equation, which for the SM reads:

\

i+j=n i P i-+j+k=n
' P PP :
n{>:>—< = ; PZ + {Z Z R
‘ (i AR Yy (im0 RER

k:

T

Each term of the sums represents a “branch”, which is olatadityemultiplying the generating
currents with the interaction vertex, marked by the smat, lamd the propagator &, marked by
the thick line. The recursion procedure consists in usiggRlgson-Schwinger equation starting
from n = 2, for whatever allowed particle, obtaining the 2-leg currents:

K} - >— (2.3)

This result is then used to compute the 3-leg currents, dgaall possibleP:

}}:%—+ﬁ—+>~. (2.4)

Proceeding in this way, one can compute recursively allecusrforn < L — 1. For the last step,
i.e. forn=L—1, not all currents are needed, but just the one with thegb@i coinciding with
the antiparticle® of the last particle. The amplitude is then obtained by multiplying this unique
last current with the inverse of the propagatoPpfand with its wave function:

o = L11:K>—<FJL x (propagator of.) tx e— P (2.5)

The advantage of the recursion procedure with respect taghal approach based on Feyn-
man diagrams is the possibility to avoid recomputing ideitsub-graphs contributing to different
diagrams; furthermore, each current being the sum of mamgsaphs, the number of generated
objects which are passed to the next step of the recursi@uised with respect to a “diagram by
diagram” procedure.

3. One-loop recursion relations
Every one-loop amplitude can be written as a linear comtainaif tensor integrals (TIs):

t - Uy,
CM:Z¢LMH?M. (3.1)

The tensor coefficients (TCs;ﬁl)__.urt do not depend on the loop momentugnwhich is present
only in the Tls:
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b _ (2mp)*P gk ---gHn (t) (t) )
Ty = / & p® ... p®’ D’ = (a+p)* = (m)*. 3.2)
o)

ki
The key of an automatized computation of one-loop amplagufde complicated processes is to

find an efficient procedure to compute the T@ﬁ%..urt. Our approach to solve this problem starts
from the work of van Hameren [10], which proposed a way to gaime the Dyson-Schwinger
recursion relation to one-loop gluon amplitudes in QCD. \&echfurther developed this approach
to deal with the full SM. Thanks to the correspondence betveeene-loop diagram with external
legs and a tree diagram with+ 2 external legs (obtained by cutting one of the loop linesg o
can associate with the loop procésst---+ P — 0 a family of tree processes with two more legs
P+--+PR +P+ P — 0, for any particleP, of the SM. This correspondence is however not
unique and selection rules have to be applied to identifytrise diagram associated with a given
one-loop diagram. The problem basically arises from the tfzet the loop diagram can be cut
at any of its loop lines and that we can run along the loop ali®é or counterclockwise. As a
simple example we consider a three-point function at ong &l find six corresponding tree level
diagrams:

O, L L I I L

The tree diagrams have been drawn in such a way, that one siinidantify the original sequence
of the loop lines (called “loop flow"), starting from the extal loop leg with tag number-2and
ending with the external loop leg with tag numbér2 The selection rules must discard the re-
dundant contributions and be simple enough to be transladadthe diagrammatic representation
into the language of off-shell currents. Two rules accoatyiig this are:

1) The current containing the first external line enters tlop Iflow first.

2) The 3 currents containing the external legs with the 3 lesidbinary numbers enter the loop

flow in fixed order (for example given by the ascending ordehef3 binaries).
Applying the first rule to our example, we discard 4 redundhagrams:
8 16 8 16 8 16 8 16

1{)<z—> 1&}“ }(—Fz}( +4>< +4}<

while the second rule excludes the Iast unwanted contobuti
8 16 8 16

4 4 2
1{2( — 1{:( + 1}( .
2 2 4

Having reduced the formal generation of the one-loop anmtditto the generation of a set of
tree-level processes, we can build the “loop off-shell @nts” in a similar way as the tree-level
currents, by means of a recursion relation:

Po
; = i+j=n |+J+k—
n ( ) = z
‘ {it{i} P;j {I}{J}{k} P'ZJ

Formally the relation is the same as at tree level, with tititexhal legP, (at loop level the particle
Py is chosen as last). The main difference comes actually ftwerfact that every loop current
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contains a dependence on the integration momemjugenerated by the Feynman rules for the
vertex and the propagator. Working in the 't Hooft—-Feynmangg in the SM, the-dependence
of (vertex)x (propagator) takes the form

a,g+b
(@+p)2—nm?
This g-dependence determines through repeated applicatiore a€ttursion relation the structure
of the loop currents, which aftdérsteps gets g-dependent structure of the type:

k M1, .. qMr
: q q
loop current(q) = alk", ,
2, S T

wherek is the number ofj-dependent propagators ands the rank of each term of the linear
combination. Theg-dependence of the loop currents in Eq. (3.5) has the sametigte as the
one-loop amplitude of Eqg. (3.1). In particular the coefiili:iaaa&kl’.r.?ur that we get at the last step of

the procedure coincide with the T@gmuﬂ. Therefore we use the recursive relation in Eq. (3.3) to

(vertex) x (propagatoy = (3.4)

(3.5)

compute at each step the coefficieaﬁ',g_?ur of the loop current, keeping track of the corresponding
loop propagators. This is done by defining thimdependent loop off-shell current

n.’: , (P1,myg)
Wi (P.¢,B,{p1,..., Pk}, {Mme,...,M}) = 11 , (3.6)

where the sequences of off-set momeia . . ., pc} and of masseém, ..., m} of the propagators
link eachw;, with its q structure and at the end of the procedure allow to relate €&cto its TI.
The tensorial index, of the loop current;, is a short-hand notation to express the coefficients
alx") , for all values ofr andp; - - -

ik=0 — Wik:a(k’()), k= 1....4— Wik:a;,kl’D, ik:5,...,14 — Wik:af{lzlez}’

where we considered that only symmetric combinations ofttieesii1, . . ., U give non-vanishing
contributions.

In order to apply the recursive relation in Eq. (3.3), it rémsato understand which single-
particle currents have to be associated with the new pesfiglandP,. This is done by introducing
for fermions and vector bosons a suitable set of spiggand polarization vectorsl“, in such a
way that the contraction originally contained in the loopgtams can be reproduced:

. (37)

4 4
(Wa= (h)a= g with _Z(‘E)a(‘l’i)ﬁ:%m gi“:q“ with .Z\Eiusi\/:5w> (3.8)

wherei denotes the “polarization”, aral, 8 andu, v are spinor and Lorentz indices, respectively.

4. Treatment of colour

We use the colour-flow representation introduced in Ref], [Bere the conventional 8 gluon
fieldsAf, are replaced by a833 matrix (<7, )| = % A2 (A®)} with the trace conditiory; (7,)} = 0.
Quarks and antiquarks maintain the usual colour irideX, 2, 3, while gluons get a pair of indices
i,j =1,2,3. The Feynman rules in this representation are in practitaireed by multiplying all
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gluon lines by(A a) in the standard Feynman rules. Using the algebra of the \@atln matrices,
the colour part of the new Feynman rules consists simply mhinations of Kroneckeds. For
example one gets:

(¢+m) i B2 = i1 —e— 2 igl“’ _ i15i2_igﬁ“’

m”_m’ v i ji—* i2 p2 2701 p2 ’

Il il )
Hijs \+13_i 13 1gs <|1 I3__ i 5ia| ! Os
js — ] LB x=2y = (8 329, Yo (4.1)
13 13 N 2 J37)2 J27)3 2
>>_m7? . cj \/— \/_

i =3 x

i1
iz 2
As a consequence, in the colour-flow representation theucawucture of the amplitude for a

process withk external gluons andh external quark-antiquark pairs can be written as a linear
combination of all possible products of Kronecles:

dﬁa:. ﬁ‘:n _ Z 5;'11. .. 5[‘;” olp, n=Kk+m, (4.2)

Lyeees

where we do not pose any restriction on the permutatiR{fs, ..., 3,) to be considered. At this
point basically two different strategies are possible f@ tomputation of the sum over colours
of the squared amplitude. In a framework based on colowsek amplitudes, aN2" amplitudes
42%“1’ b"“ are computed (i.e. for all possible colour indiags.. ., dn, B1,. .., Br) and the summed

“““

squared amplitude is given by

2 ap--0an ai--Qn
dT= 3 (TR g (4.3)
al...an,ﬁl,...ﬁn
Alternatively one can decide to use the decomposition of(£8) and work directly with the!
“structure-dressed” amplitudes of thecolour structureaSE’ll- - 65’”“. In this approach the summed
squared amplitude is obtained by summing over the perrontgaticcording to
o? = o Cop o, (4.4)
PP
where the coefficient€pp are trivially calculated (and simply given by positive powef N¢).

This second strategy reduces the number of amplitudes tputenand is essentially the starting
point of the known approach based on colour-ordered andgi#which aims to reduce the number
of amplitudes even more). Our implementation is slightlffedent. We assign a colour structure
(labeled by the inde%’) to each off-shell current and derive rules to build at eadelp ®f the
recursion procedure the colour structure of the outgoingeoti from the colour structures of the
incoming ones. In this way the colour structure of the amgktis automatically generated, all
structure-dressed amplitudeg are computed simultaneously one recursive procedure, and
structure-dressed currents which contribute at interatediteps to severalp are computed just
once. Moreover one can further optimize the computationuofents which only differ by the
colour structure, by recomputing just their colour coeffittiinstead of the whole current.

5. Features of REcoOLA

The code RCOLA is structured in two parts: the generation of the recursimtgdure (to
be run once) and the computation of the currents (to be ruact phase-space point). In the
generation procedure, the skeleton of the recursion ptweed created, assigning an index to each
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Process tris tgen tres tgen tres tgen tres
(COLLIER)| (single helicity) | (partial hel. sum),  (helicity sum)
uu— W+ W-g 28ms | 03s 06ms|{04s 13ms|16s 9.8ms
(QCD) (hel: -+-+-) | (hel: SS-+S)| (hel: SSSSYS)
ud - W+tggg 130ms | 14s 14ms | 25s 76ms | 52s 221 ms
(QCD) (hel: -+----) | (hel: SS-SSS) (he: SSSSSS
ug—ug”Z 82ms | 05s 14ms|10s 6.7ms | 22s 20.2ms
(EW) (hel: - ---- ) (hel: SSSS-)| (hel: SSSSYS)
ug—ugr Tt 28ms | 1.3s 25ms|20s 142ms|3.8s 29.0ms
(EW) (hel: ----- +) | (hel: SSSS-+) (he. SSSSSS

Table 1: CPU time needed by coLA for the computation of sample processes with differentcitgli
configurations (the “S” means that the sum over helicities Iteen taken for the corresponding particle).
The computation has been performed with a processor INt€léRe(TM) i5-2400 CPU @ 3.10GHz.

current and each branch. The list of all needed Tls is alsergéed at this point. Currents differing
just by the colour structures are identified and their cotméfficients are computed. In the second
part all the Tls are computed (calling external librarieseell as all currents for all polarizations,
according to the skeleton derived in the generation partalfyi the TCs (i.e. the final currents)
are contracted with the Tls to give the structure-dressepliardes.«%, from which the squared
amplitude summed over colour and polarization is calcdlate

RecoLA allows the computation of tree and one-loop amplitudesérfai SM, including all
counterterms [14] and rational parts of type!RP5]. A consistent treatment of unstable particles
is provided by using the complex-mass scheme [16]. On-shietirmalization is used for the EW
sector, while the strong coupling constant is renormalinettie MS scheme. The ultraviolet pole
structure of one-loop amplitudes can be accessed numgragad for soft/collinear divergencies
either dimensional or mass regularisation can be empldyeda given process at tree or one-loop
level REcoLA allows to single out arbitrary powers in the strong couplogstant. In addition
RECOLA calculates all colour- and spin-correlated amplitudesdadeor the application of the
dipole subtraction method [17]. The calculation of oneplamplitudes relies on the external
computation of the tensor integrals which is done with the.CIBR library [18].

In addition to an efficient treatment of colour, also the surardhelicity configurations has
been optimized by avoiding recalculation of identical eats appearing in different helicity con-
figurations together with the use of helicity conservation rhassless fermions in the SM. The
resulting code requires negligible amount of memory forcexables, object files and libraries,
while the RAM needed does not exceed 2 Ghyte even for com@tigarocesses. For the sample
processes in Table 1, the CPU time needed in the generatidithis order of some seconds, while
the computation of the TCs takes at most few hundreds ofsedbnds, usually of the same order
of magnitude as the computation of the TIs with COLLIER.

6. Conclusion

We have presentedeROLA, an efficient code based on a one-loop generalization of IByso

1Since the loop currents are computed numerically, theicésdare strictly 4-dimensional and the R2 part must be
added separately.
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Schwinger recursion relations, which automatizes the caatipn of EW and QCD processes
with elementary particles in the SM at NLO. The code has beea fior the computation of EW
corrections to the procegsp — Z+2j [9, 19].
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