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The hadro-production of inclusive jet process is given by

P(pA)+P(P̄)(pB) → J(pJ)+X(pX) , (1)

wherepA, pB are the incoming hadron momenta,pJ is the momentum of the observed jetJ andpX

is the momentum of the inclusive final stateX. This is a dominant process in hadron collisions and
plays an important role in probing the hard scattering of partons at high energies. It has been very
well measured experimentally both at the LHC and at the Tevatron [1–4], and the relevant data has
been used in the new Physics searches as well as in the measurement of strong coupling constant
αs and gluon distribution functions inside the proton.

All such analyses require a very precise theoretical prediction of the jetcross sections, in
particular the corresponding higher order QCD corrections. While the exact next-to-leading order
(NLO) results to the parton scattering processes underlying the one-jet inclusive hadro-production
are available since long [5, 6], the complete next-to-next-to-leading order(NNLO) cross sections
are yet to be computed. The jet cross sections in the large transverse momentum pT or the threshold
region are essentially dominated by the soft gluon contributions. In this region, the threshold
logarithms are very large and need to be resummed to all orders in the perturbation theory. Such
threshold corrections to 2-loop level at NLL accuracy have been computed in [7] and the all order
resummation to NLL accuracy is done in [8, 9]. Recently, the NNLO QCD corrections in the
purely gluonic channel to one-jet inclusive and di-jet production at hadron colliders have been
performed [10].

The jet cross sections precisely depend on the details of the jet definition i.e.,the jet algorithm,
the jet’s cone sizeR and the jet’s mass. The resummation of threshold logarithms in [7] assumes
massless jets while the resummed results given in [9] are obtained using small cone approximation
where the jets are assumed to be massive. For the former case of massless jets, as the threshold
corrections are widely used e.g., in experimental analysis of one-jet inclusive data [11] and in the
determination of parton distribution functions (PDFs) from global fits [12,13], it is particularly in-
teresting to assess their kinematical range of validity. To this end, in the present work we compute
the threshold logarithms in the soft-gluon resummation formalism [14, 15] and compare our re-
sults at NLL accuracy [16] with those in the literature [7]. Further, to investigate their kinematical
range of validity and their cone size dependence, we compare the 1-loop threshold corrections with
the exact NLO QCD results. The latter can directly be obtained from stand-alone programs like
NLOJET++ [17] andMEKS [18]. We find that threshold corrections provide good theory predictions
but in a kinematical region that is rather limited to largepT and small jet cone sizesR. Since the
latter turn out to be typically much smaller than the currently chosen values at LHC and Tevatron,
the dependence on finite cone sizes, which is unaccounted for in [7], introduces a large additional
systematic uncertainty in the threshold approximation. This is unlike the case of soft-gluon re-
summation for single-particle inclusive hadro-production at high transverse momentum [19] or for
heavy-quark hadro-production (see, e.g., [20, 21]), where the threshold logarithms are found to
provide extremely precise predictions through NNLO.

There are 9 different subprocesses that contribute to this inclusive jetproduction and a generic
subprocess can be written as

a(p1)+b(p2) → c(p3)+d(p4), (2)
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wherea, b are the incoming partons andc, d are the partons in the final state. The corresponding
Mandelstam invariants ares= (p1 + p2)

2, t = (p1− p3)
2 andu = (p2− p3)

2. Here, either of the
partons in the final state can form a jet (the other being inclusive) and hence the cross sections can
be computed either by symmetrizing the matrix elements (t ↔ u) or by running a jet-algorithm.
Defining s4 = s+ t + u ≥ 0, the threshold region can be identified ass4 = 0. In a physical in-
terpretations4 denotes the additional energy carried away by the real gluons above thepartonic
threshold.

For one-particle inclusive (1PI) kinematics [22], the threshold corrections at a certain order
can be obtained from the expansion of the resummed result to that particularorder. The resumma-
tion is based on the factorization of the partonic cross sections near threshold into various functions,
e.g. soft, hard and jet functions. The soft functionS is governed by the soft anomalous dimension
ΓS [8, 23] and it summarizes the dynamics of soft gluons that are not collinearto the external
partons. The hard scattering of the incoming partons is described by the hard functionH and the
dynamics of both initial and final state collinear gluons are summarized respectively by the initial
and final state jet functionsJ I andJ F which contain all leading logarithms LL and some NLL
enhancements.

For threshold corrections, it is precisely these final state jet functionsJ F
b that include theR

dependence. For massless jets, these jet functions will be independent of R as in [7]. Any depen-
dence of the final state jet functions onRwill alter the resummed cross sections at LL accuracy and
instead give rise to lnR terms leading to jet’s mass, as is the case for [9].

The resummation is conveniently carried out in the space of momentsN. The details of the
process dependent soft, hard and soft anomalous dimensions togetherwith the jet functions for
massless jets and the parton level resummed formula for a generic subprocess in Eq. (2) can be
found in [7, 16, 23]. Moreover, these resummed results can be expanded to obtain the threshold
corrections which for a generic subprocess to 1-loop level at NLL accuracy can be given as

s2 d2σ̂
dtdu

=
αs

π
σ(0)

{

c2

[

ln(s4/p2
T

s4
)

]

+

+c1

[

1
s4

]

+

}

,

whereσ(0) is the Born cross section. The corresponding 2-loop level threshold corrections are
given by

s2 d2σ̂
dtdu

=
(αs

π

)2
σ(0)

{

b2

[

ln3(s4/p2
T)

s4

]

+

+b1

[

ln2(s4/p2
T)

s4

]

+

}

.

Hereci (bi) are the coefficients of LL(i = 2) and NLL(i = 1) at 1-loop (2-loop) level. The sub-
leading logarithms following NLL contain the hard matching functions that can beobtained from
the finite parts of the 1-loop virtual graphs. In the present analysis, though, we have not included
these matching functions and leave them for future study. The necessaryformulae for these match-
ing functions in various kinematics have been derived in [19,24].

In our analytical computation we have used the symbolic manipulation programFORM [25] and
the related color package [26] for color algebra. A complete treatment of the kinematics and phase
space integration can be found in [27] and the plus-distributions are defined as in [22]. We find
that our analytical results for all parton level cross sections are in goodagreement with those given
in [7] except for a small difference of an overall color factor of[N2

c/(N2
c −1)2] at NLL level for the
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subprocessgg→ qq̄. The relative contribution of this subprocess to the total cross section is very
small for both Tevatron and LHC energies, hence the differences are numerically negligible in any
application for collider phenomenology.
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Figure 1: LO results and 2-loop threshold correctionsσ(2) for the transverse momentum distribution of the
jet at the LHC (left) and at the Tevatron (right).
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Figure 2: K-factorsK(1), K(2) andK(NLO) defined with respect to 1-loop threshold corrections, 2-loop
threshold corrections and the exact NLO results for

√
S= 7 TeV LHC (left) and for Tevatron (right).

Next we present the transverse momentum distributions of the jet for both Tevatron (
√

S= 1.96
TeV) and LHC (

√
S= 7 TeV) energies, and compare our threshold corrections with those obtained

from fastNLO [28]. In our analysis, we use CTEQ6.6 (αs(M2
Z) = 0.118) [29] and ABM11 NNLO

(αs(M2
Z) = 0.1134) [12] PDFs. Hereαs is provided by the respective PDF sets through theLHAPDF

interface [30]. Throughout our analysis, we use the scale choiceµF = µR = pT . For our numerical
study, we consider the central rapidity region of the jet, 0≤ |y| ≤ 0.5 for LHC and 0≤ y≤ 0.4 for
Tevatron, where the parton momentum fractionsx1 andx2 are closer to each other. In the rest of
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Figure 3: NLO K-factorsK(NLO) for inclusive jet production as a function of the parameterR in the
anti-kt jet algorithm, computed for

√
S= 7 TeV LHC. The solid line corresponds to the one-loop threshold

correctionsK(1) at NLL accuracy.
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Figure 4: NLO K-factorsK(NLO) for inclusive jet production as a function of the parameterR in the anti-kt

jet algorithm, computed for Tevatron
√

S= 1.96 TeV. The solid line corresponds to the one-loop threshold
correctionsK(1) at NLL accuracy.
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the paper we use the followingK-factors defined as:

K(1) = 1+
σ(1)

σ(0)
, K(2) = 1+

σ(2)

σ(0)
, (3)

K(NLO) = 1+
σ(NLO)

σ(0)
, K(NNLO∗) = 1+

σ(NLO) +σ(2)

σ(0)
, (4)

whereσ(0) is the LO cross section,σ(1) andσ(2) are the 1-loop and 2-loop threshold corrections to
NLL accuracy, andσ(NLO) is the exact NLO QCD correction.

In Fig. (1), we show the comparison of the LO cross sections and the 2-loop threshold correc-
tionsσ(2) for LHC as well as Tevatron, and find that our results are well in agreement with those
of fastNLO. For the 2-loop threshold correctionsσ(2) this constitutes an independent check of [7].
Next, we validate the threshold corrections by comparing them with the fixed order NLO QCD
results. In Fig. (2), we present theK-factorsK(1), K(2) andK(NLO). The NLO results forK(NLO)

are read from the grids offastNLO. For LHC, the NLO results are obtained using the anti-kt jet
algorithm (R= 0.5) and are used in the CMS inclusive jet data analysis [2], whereas for Tevatron
they are computed using the mid-point cone algorithm (R= 0.7).

In the highpT region or the threshold region (s4 = 0), the Sudakov logarithms dominate in the
perturbative expansion and hence the 1-loop threshold corrections are expected to be closer to the
NLO QCD corrections, i.e.,K(1) ≃ K(NLO). But as can be seen from Fig. (2), these two predictions
differ for most of thepT region considered. For LHC, in the lowpT region the threshold corrections
overestimate the NLO ones. Particularly the 2-loop threshold corrections are larger than even the
NLO ones and are subject to large theory uncertainties in the relevant jet analysis. The source
of discrepancy can be related to the assumption of massless jets and the missinghard matching
functions in the computation of threshold corrections.

To investigate this further, one needs to consider the jet definition used in theexact NLO
results, in particular the parameterR. At LO the two partons in the final state, which eventually
hadronize and form two jets, are well separated in the rapidity-azimuthal angular plane and hence
LO results are insensitive to the choice ofR. However, at NLO and beyond there are additional
partons in the final state and their formation into jets very much depends on the size of the cone in
which these partons fall. This is completely different from the case of resummation of massless jets
where there is no dependence onR. The deviations ofK(NLO) from K(1) can better be understood
from the variation of NLO results withR. For this variation, we use theNLOJET++ program with
the anti-kt jet algorithm fromFastJet [31], and CTEQ6.6 PDFs [29]. It is worth noting that
these NLO cross sections can also be computed using the results of “small-cone approximation”
(SCA) [32] that are found to be applicable up to cone sizes ofR= 0.7.

In Figs. (3) and (4), we present our results in terms ofK(NLO) for LHC and Tevatron by varying
the cone size fromR= 0.2 to R= 0.7. These figures demonstrate that the NLO QCD corrections
increase withRand the uncertainty in the NLO results due to this cone size variation can be as large
as 30% regardless of thepT range considered. Interestingly, in the highpT region the threshold
approximation which is independent ofRcoincides with the exact NLO results for smallerRvalues
of aboutR= 0.3. It is also worth noting here that the 2-loop threshold corrections for theTevatron
illustrated in Fig. (1) have been used in the determination ofαs [11] and they have decreased the
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Figure 5: Comparison ofK-factorsK(1), K(2), K(NLO) andK(NNLO∗) for 1-loop threshold, 2-loop threshold,
NLO and NLO + 2-loop (NNLO*) cross sections computed for

√
S= 7,8 TeV LHC.

central value ofαs(M2
Z) = 0.1201 obtained from pure NLO QCD corrections toαs(M2

Z) = 0.1161.
Finally, in Fig. (5), we present theK-factorsK(1), K(2), K(NLO) andK(NNLO∗) for

√
S= 7,8 TeV

LHC, for a chosenR= 0.7.
To improve the description of 1-loop threshold corrections in the lowpT region (< 500 GeV),

whereK(1) is larger thanK(NLO), one requires to systematically include the hard matching func-
tions. We also note that in a recent study [33], which is closely related to the formalism of “one
particle inclusive” (1PI) kinematics that we are considering, the authors corroborate our findings
and, using the “narrow jet approximation” they systematically include the dependence of the jet
cone sizeR in the threshold corrections.

To summarize, we have computed the threshold corrections to inclusive jet production at
hadron colliders in the soft-gluon resummation formalism and find that our results are in agree-
ment with those in the literature apart from few typographical errors. Furthermore, we have in-
vestigated their kinematical range of validity by studying 1-loop threshold andexact NLO QCD
results. These QCD threshold corrections provide better approximation in the highpT region and
for smaller cone sizes of aboutR= 0.3, implying that these threshold corrections can lead to large
theory uncertainties for lowpT < 500 values and for typical values ofRused at LHC or Tevatron.
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