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1. The boosted regime and substructure tools

The main aims of the research programme carried out at the theLarge Hadron Collider (LHC)
at CERN are to understand the mechanism of electroweak symmetry breaking and to explore the
TeV scale for signs of new physics beyond the Standard Model of particle physics. In order to
achieve this, protons are collided at energies far above theelectroweak scale, opening up the possi-
bility of producing electroweak-scale particles with a large boost. In these situations, their hadronic
decay products are collimated into a single jet. Consequently a vibrant research field has emerged
in recent years, investigating how best to identify the characteristic substructure that appears inside
“signal" jets in order to differentiate them from background (QCD) jets (for a review of the field
see Refs [1, 2, 3, 4]). Many “grooming" and “tagging" algorithms have been developed, success-
fully tested and are already being used experimental analyses (in particular see Refs [5, 6, 7, 8] for
studies on QCD jets).

Until very recently, nearly all the theoretical studies of substructure tools have been done
using Monte Carlo parton showers. While these are powerful general purpose tools, their essen-
tially numerical nature offers little insight into the results produced or their detailed and precise
dependence on tagger parameters and the parameters of jet finding. Such a detailed level of under-
standing, which can be achieved for example via analytical formulae, is in fact crucial in order for
substructure studies to realise their full potential. However it has beenfar from obvious that, given
their inherent complexity, substructure taggers can be understood to any extent analytically.

In two recent papers [9, 10] we have developed the first comprehensive theoretical understand-
ing of three commonly used substructure tools: trimming [11], pruning [12, 13] and the mass drop
tagger [14]. In these proceedings we review the main resultsof those papers, focussing on the
perturbative properties of jet mass distributions of QCD jets with the application of substructure
algorithms, and compare the results to the plain jet mass distribution.

2. The perturbative structure of jet mass distributions

Jet mass distributions are affected by logarithmic corrections in the ratio of jet invariant mass
(m) over its transverse momentum (pt ). When this ratio becomes small, as happens for highly
boosted configurations, these logarithms are large and fixed-order perturbation theory is not a reli-
able way to organise the calculation . One then needs to resumthese large corrections to all orders
in perturbation theory. Resummed results can be then matched to fixed-order ones, typically ob-
tained at next-to-leading order (NLO), in order to obtain a reliable estimate of jet masses over a
wide range ofm/pt .

2.1 Plain jet mass

Resummed calculations are usually discussed in terms of thecumulative distributions, i.e. the
integral of the jet mass distribution up to a fixed value:

Σ(ρ) =
1
σ

∫ ρ dσ
dρ ′ dρ ′, ρ =

m2

p2
t R2

, (2.1)

whereR is the jet radius. In our discussion, we will work in the smalljet radius limit R ≪ 1.
This considerably simplifies our expressions because we only have to consider the radiation from
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the parton that initiated the jet: large-angle radiation from other final-state partons and from the
initial-state partons result in contributions which are power suppressed inR. For brevity, we also
limit ourselves to the case of quark-initiated jets.

To next-to-leading logarithmic (NLL) accuracy, i.e. control of terms αn
s Ln+1 and αn

s Ln in
lnΣ(ρ), whereL≡ ln 1

ρ , the cumulative distribution can be computed using an independent-emission
approximation, ignoring subsequent splittings of those emissions, other than in the treatment of the
running coupling (see for instance [15, 16]) and of non-global contributions [17]. The NLL result,
in the small-R limit, can be written as

Σ(ρ) = e−D(ρ) ·
e−γE D′(ρ)

Γ(1+ D′(ρ))
·N (ρ) . (2.2)

The first factor, which is double logarithmic, accounts for the Sudakov suppression of emissions
that would induce a (squared, normalised) jet mass greater thanρ . In a fixed coupling approxima-
tion the resummed exponent reduces to

D(ρ) ≃
αsCF

π

[

1
2

ln2 1
ρ

−
3
4

ln
1
ρ

+O (1)

]

, (2.3)

The second factor in Eq. (2.2), accounts for the fact that theeffects of multiple emissions add
together to give the jet’s overall mass. The third factor, also single logarithmic, accounts for mod-
ifications of the radiation pattern in the jet (non-global logarithms [17]) and boundaries of the jet
(clustering logarithms [18, 19, 20, 21]) induced by soft radiation near the jet’s edge.

Non-global logarithms are the main obstacle to a full resummation of the standard jet mass
beyond NLL accuracy (for work towards higher accuracy, see Refs. [22, 23]) and why even the
NLL calculations have to neglect 1/N2

C suppressed terms, as done in Ref. [24, 25]1.

2.2 Trimmed mass distribution

Trimming [11] takes all the particles in a jet of radiusR and reclusters them into subjets with a
jet definition with radiusRsub< R. All resulting subjets that satisfy the conditionp(subjet)

t > zcutp
(jet)
t

are kept and merged to form the trimmed jet. The other subjetsare discarded.

We can get an idea of the trimmed jet mass behaviour by considering configurations in which
the jet is made of a hard quark and a bunch of soft gluons. It is then clear that the algorithm will
cut away soft radiation if emitted at angles larger thanRsub, while arbitrarily soft gluons radiated at
angles smaller thanRsub will contribute to the trimmed jet mass.

The full leading logarithmic (LL) calculation of the trimmed jet mass produces:

Σ(trim)(ρ) = exp

[

−D(max(zcut,ρ))−S(zcut,ρ)Θ(zcut−ρ)

−Θ(zcutr
2−ρ)

∫ zcutr2

ρ

dρ ′

ρ ′

∫ zcut

ρ ′/r2

dz
z

CF

π
αs(ρ ′zp2

t R2)

]

. (2.4)

1Resummation of non-global logarithms with fullNC dependence has been recently achieved in Ref. [26].
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wherer = Rsub
R and we have neglected finitezcut corrections. The resummed exponentD is the same

as in Eq. (2.3), while the functionS is single-logarithmic and in a fixed-coupling approximation is
given by

S(a,b) ≃
αsCF

π

[

ln
1

zcut
−

3
4

+O (zcut)

]

ln
a
b
, (2.5)

We can now discuss differences and similarities of the trimmed mass distribution in Eq. (2.4)
to the plain jet mass Eq. (2.2). The main similarity from the point of view of resummed calculations
is that in both cases the analysis of the one loop case essentially captures the LL behaviour to all
orders (this is not the case for pruning or mass drop). However, the actual form of the one-gluon
exponentiation in the case of trimming has a non-trivial dependence on the jet’s kinematics. We
can identify three distinct kinematic regions: forρ > zcut trimming is not active and the result is
the same as plain jet mass. Forr2zcut < ρ < zcut, the parameterzcut provides a lower limit for the
emissions’ energy, resulting into a single-logarithmic distributions. The last regionρ < r2zcut is
again double logarithmic and it correspond to configurations in which soft gluons are emitted at
angles smaller thanRsub, as mentioned above.

Eq. (2.4) does not capture full NLL accuracy i.e. all termsαn
s Ln in lnΣ(ρ). The missing terms

include non-global logarithms, related clustering logarithms, and multiple-emission effects on the
observable. They should all be relatively straightforwardto include, if desired, since they follow
the structure of corresponding terms for the plain jet-massdistribution.

In order to test that the approximations made in order to obtain the resummed result in Eq. (2.4)
capture the relevant physical effects, we compare our result to the one obtained with a Monte Carlo
parton shower. This comparison is shown in Fig. 1. Our calculations indeed reproduce the shape of
the distribution in all three distinct regions, as well as the position of the transition points between
these regions (indicated by vertical arrows), which confirms that we have analytically captured the
essence of trimming.

2.3 Pruned mass distribution

Pruning [12, 13] takes an initial jet, and from its mass deduces a pruning radiusRprune =

Rfact · 2m
pt

, with Rfact of order 1 (here we adopt the widespread choiceRfact = 0.5, but our main
conclusions do not depend on this choice). It then reclusters the jet and for every clustering step,
involving objectsa andb, it checks whether∆ab > Rprune and min(pta, ptb) < zcutpt,(a+b), where
zcut is a second parameter of the tagger. If so, then the softer of thea andb is discarded. Otherwise
a andb are recombined as usual. Clustering then proceeds with the remaining objects, applying
the pruning check at each stage.

We can start our analysis by considering theO (αs) contribution. At this perturbative order the
jet is made of two partons,a andb with m = mab and∆ab > Rprune= mab

pt
. Thus, the two partons

are kept only if they pass the energy condition, irrespectively of their angular distance. This has a
remarkable consequence: the LO pruned mass distribution receives no contributions from the soft
region and it has only a single logarithm, which is of pure collinear origin.

This behavior certainly appears desirable from the viewpoint of taming the background jet
mass distribution as it rids us of double logarithms. Thus wemay wonder if the above feature holds
to all orders. However an analysis of the NLO contributions reveal that this is not the case and the
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Figure 1: Comparisons of the resummed calculations for the mass distributions (right-hand panels) to a
standard parton shower (left-hand plots). The arrows indicate the analytic prediction for the position of the
transition points. The results on the left-hand panels havebeen obtained from Monte Carlo simulation with
Pythia 6.425 [27] in the DW tune [28] (virtuality-ordered shower), with a minimumpt cut in the generation
of 3TeV, for 14TeVpp collisions, at parton level, including initial and final-state showering, but without
the underlying event (multiple interactions).

5



P
o
S
(
R
A
D
C
O
R
 
2
0
1
3
)
0
4
7

Perturbative calculations for jet substructure Simone Marzani

pruned mass distribution receives contributions from softemissions beyond LO and consequent
double logarithmic enhancements appear.

In particular, we consider NLO configurations (which involve three partons), where there is a
soft parton (p3) that dominates the total jet mass thus setting the pruning radius, but is soft enough
that it fails thezcut threshold and therefore it does not contribute to the prunedmass; meanwhile
there is another parton (p2), within the pruning radius, that contributes to the prunedjet mass
independently of how soft it is. We call this “I-pruning”, because at the angular scaleRprune (set
by the soft partonp3), the final pruned jet consists of a single hard prong. On the other hand, we
call “Y-pruning” those configurations that contributed to the leading order result for which at an
angular scaleRprune, the pruned jet always consisted of two prongs.

The above analysis can be generalised to all orders and a resummed result for pruning and
its Y-pruning and I-pruning components can be found. Here wereport only simplified (double
logarithmic) versions of the results, valid at fixed coupling, and we refer the reader to Ref. [9] for
more complete expressions. We have

dσ (prune)

dρ
=

dσ (Y-prune)

dρ
+

dσ (I-prune)

dρ
, (2.6)

with

ρ
σ

dσ (Y-prune)

dρ
≃ e−D(ρ) αsCF

π

[

ln
1

zcut
−

3
4

]

,

ρ
σ

dσ (I-prune)

dρ
≃

(

αsCF

π

)2∫ 1

ρ

dρfat

ρfat
lnρfate

− 1
2

αsCF
π ln2 1

ρfat ln
ρ

ρfat
e−

1
2

αsCF
π ln2 ρfat

ρ . (2.7)

Several comments can be made about the perturbative structure of the above results. First of
all we note that the I-pruning distribution contains a convolution between two exponentials. The
resulting distribution is double logarithmic, i.e.Σ(I-prune)(ρ) containsαn

s L2n contributions and hence
it is as singular as plain jet mass. On the other hand, Y-pruning is essentially a Sudakov suppression
of the leading order result and, therefore,Σ(Y-prune)(ρ) is as singular asαn

s L2n−1. Interestingly,
when considering full pruning, i.e. the sum of the two components, a cancellation occurs in the
z2
cut < ρ < zcut region and one obtains a distribution which is only single-logarithmic.

As for trimming, to reach full NLL accuracy would require thetreatment of several additional
effects: non-global logarithms and related clustering logarithms and multiple-emission effects on
the observable. Non-global logarithms enter in a number of ways: in particular, from the boundary
at θ ∼ R, they affect the fat-jet mass, and through it the distribution of the pruning radius. They
will affect both the Y and I components starting, in the small-zcut limit, from orderα3

s .
The comparison between the analytic calculation and the Pythia shower is shown in Fig. 1 in

the middle panel. There one observes excellent agreement between the shapes of the analytical and
MC distributions, indiacting once again a successful analytical description of pruning.

2.4 MDT and mMDT mass distribution

The mass-drop tagger (MDT) [14] is a declustering algorithmto be used with Cambridge/Aachen
jets [29, 30]. In its original incarnation, the algorithm starts from a jetj, then undoes the last step
of the clustering finding two subjetsj1 and j2, with m j1 > m j2 If there was a significant mass drop,

6



P
o
S
(
R
A
D
C
O
R
 
2
0
1
3
)
0
4
7

Perturbative calculations for jet substructure Simone Marzani

m j1 < µm j, and the splitting is not too asymmetric,y = min(p2
t j1, p2

t j2)∆R2
j1 j2/m2

j > ycut, then the jet
j is tagged. Otherwisej is redefined to be equal toj1 and the algorithm iterates (unlessj consists
of just a single particle, in which case the original jet is deemed untagged).

At O (αs) the mass-drop condition is always satisfied, so we only need to check for theycut

condition, which is essentially a cut on the energy sharing between the two prongs. This situation
is completely analogous to what we have encountered for pruning at LO and the resulting mass
distribution has only a single logarithm. However, starting from NLO the behaviour of MDT is
far from straightforward. Complications arise because MDTrecurses on the more massive branch,
which in principle can be the softer of a given subjet pair. This was not what was intended in the
original design, intended to tag hard substructure, and is to be considered a flaw. We have in fact
explicitly computed thiswrong-branch contribution at NLO [9, 10] and found that it generates a
contribution toΣ as singular asα2

s L3. The “wrong branch" contribution turns out to be numerically
small but nevertheless calls for a modification.

The modified mass drop tagger (mMDT) is instead defined in sucha way that it recurses on
the subjet with the largestm2+ p2

t . Not only does the mMDT eliminate the wrong-branch issue, but
it also turns out to greatly facilitate the resummation of the tagged mass distribution. We find that
the all-order mMDT mass distribution is simply given by the exponential of the one-loop result:

Σ(mMDT)(ρ) = exp[−D(max(ycut,ρ))−S(ycut,ρ)Θ(ycut−ρ)] . (2.8)

The mass distribution above has remarkable properties: it only contains single-logarithmic (αn
s Ln)

contributions. All contributions from soft emissions havebeen successfully removed. It is to our
knowledge the first time that a jet-mass type observable is found with this property. We will analyse
the salient properties of mMDT in more detail in the next section.

The comparison between our analytic calculation and the Pythia shower is shown in Fig. 1 in
the bottom panel and yet again we note that our resummation perfectly captures the behaviour of
the mMDT.

3. Significant features of the modified mass drop tagger (mMDT)

Given its remarkable properties it is worth summarising themain features of the mMDT.

• Background shapes. mMDT mass distributions are free of Sudakov peaks and theirshape
is fairly insensitive to changes inpt . Moreover, the value ofycut can be adjusted in order
to obtain a flat distribution for the background, which is potentially advantageous for data
driven background studies.2

• Calculability.

1. Fixed order An interesting consequence of the presence of only single logarithms re-
lates to the validity of fixed-order perturbation theory, which is is expected to be valid
down toL ∼ 1/αs, rather than only down toL ∼ 1/

√
αs. This is shown in Fig. 2, on the

left, where the resummed result is plotted together with fixed-order predictions.
2Despite the name, the mass drop parameterµ does not significantly influence the shape of the distribution (if it is

not taken too small). Also the mass-drop procedure is often used together with filtering [14], which only modifies the
resummed result at the Nnfilt LL level, which for the standard choicenfilt = 3 is highly subleading.
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2. Resummed level. We have seen that mMDT completely removes contributions from soft
emissions: soft-collinear ones, or pure soft ones. The absence of pure soft divergences
has an important consequence, namely the absence of non-global logarithms. This
makes the mMDT particularly interesting and it suggests that the mMDT should be
given priority in calculations aiming for accuracy beyond single logarithms.

3. Non-perturbative corrections. So far we have concentrated on perturbative predictions.
Clearly in the context of calculability we also need to take into account non perturbative
effects. These include hadronisation, for which analytic estimates are perhaps possible,
and underlying event contributions. A Monte Carlo study of hadronisation effects and
underlying event is summarised in Fig. 3. One may expect groomers and taggers to
have reduced sensitivity to non-perturbative physics. This is particularly striking for
mMDT which for these values ofpt has very small hadronisation corrections (not the
case for pruning or trimming) and effectively no sensitivity to the underlying event.

Therefore, we can conclude that mMDT not only provides a veryuseful tool for new physics
searches (for which it was originally designed) but also appears to have special theoretical prop-
erties, which make it potentially of value for QCD measurements and studies including accurate
αs extraction. Additionally we can use it to probe and, perhaps, tune different Monte Carlo parton
showers. A study in this direction is shown on the right-handside of Fig. 2 where the resummed
result is plotted together with different versions of the Pythia shower. The plot shows that nearly all
the Monte Carlo generators are in reasonable agreement witheach other and with our resummation.
The one exception is thept -ordered shower in Pythia 6.245, which predicts a noticeably different
shape for the distribution, both at small and large masses. Following our calculations this discrep-
ancy was looked into by the Pythia authors, who after identifying an issue in their shower, released
a modified version, labelled v6.428pre, which is in much better agreement with our analytics. This
example illustrates the value of analytical understandingin situations such as this where Monte
Carlo results from various generators differ noticeably.
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