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1. Introduction

Hard-scattering processes described by perturbative QCD are affected by soft and collinear
enhancements, when the available phase space is constrained by specific, observable-dependent
boundaries. By approaching these boundaries, real radiation is kinematically inhibited. The im-
balance with virtual radiation leads to large logarithmic terms, that are singular at the kinematical
boundary. They can invalidate the (quantitative) reliability of the order-by-order perturbative ex-
pansion, already at the relative next-to-leading order. A reliable evaluation of any cross-section in
the near-threshold region requires the all-order resummation of these logarithms. A distinction can
be made between energy (invariant-mass) and transverse-momentum thresholds. Here we focus on
invariant-mass thresholds and the so called threshold-resummation [1, 2].

In the context of hadron–hadron collisions, a class of soft-gluon sensitive observables is rep-
resented by inclusive hard-scattering cross sections in kinematical configurations that are close to
the (partonic) threshold. Typical examples are the cross sections for theproduction of Drell-Yan
lepton pairs and Higgs bosons and explicit resummed results have been obtained up to next-to-
next-to-leading logarithmic (NNLL) accuracy [3, 4]. In the case of the hard scattering of three and
four (or more) coloured partons, soft-gluon dynamics leads to non-trivial colour correlations and
colour coherence effects. The general soft-gluon resummation formalism for inclusive QCD cross
sections was developed in [5, 6, 7, 8, 9, 10]. Some examples of relevantprocesses with three or
four partons at the Born level in QCD are the direct production of promptphotons [8, 9, 11, 12],
vector boson [13] and Higgs boson [15] production at high transverse momentum, production of
heavy quarks [5, 6, 8, 16] and coloured supersymmetric particles (Ref. [17] and references therein)
at hadron colliders, single top-quark production [18], jet [19] and dihadron [20] production, and
single-hadron inclusive production in hadronic collisions [21].

In the following we consider the single-hadron inclusive cross section atfixed rapidity of the
observed hadron and we summarise the results of [22].

2. NLO results near the partonic threshold

We consider the inclusive hard-scattering reactionh1(P1)+ h2(P2) → h3(P3)+ X, where the
collision of the two hadronsh1 andh2 with momentaP1 andP2, respectively, produces the hadron
h3 with momentumP3 accompanied by an arbitrary and undetected final stateX. According to the
QCD factorization theorem the corresponding cross section is given by

E3
dσh3

d3P3
(P1,P2,P3) = ∑

a1,a2,a3

∫ 1

0
dx1

∫ 1

0
dx2

∫ 1

0

dx3

x2
3

fa1/h1
(x1,µF) fa2/h2

(x2,µF)da3/h3
(x3,µ f )

× p0
3
dσ̂a1a2→a3

d3p3
(x1P1,x2P2,P3/x3; µF ,µ f ) , (2.1)

where fa/h(x,µF) is the parton density of the colliding hadron evaluated at the factorization scale
µF , andda/H3

(x,µ f ) is the fragmentation function of the partona into the hadronH3 at the factor-
ization scaleµ f , as defined in theMS factorization scheme. The last factor,dσ̂a1a2→a3(p1, p2, p3)

is the inclusive cross section for the inelastic scatteringa1(p1) + a2(p2) → a3(p3) + X, which,
throughout the paper, is always treated with massless partons (kinematics).
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The NLO calculation for this process was carried out in analytical form, and it is presented
[23, 24, 25] in terms of the independent kinematical variabless,v andw, which are related to the
customary Mandelstam variabless, t,u through the definitionv≡ 1+ t/s, w≡−u/(s+ t) with the
corresponding phase-space boundariess≥ 0, 1≥ v ≥ 0, 1≥ w ≥ 0. Using these variables, the
partonic cross section in Eqs. (2.1) can be written as

p0
3

dσ̂
d3p3

(p1, p2, p3; µF ,µ f ) =
α2

S(µ2
R)

π s

[ 1
v

dσ̂ (0)(s,v)
dv

δ (1−w) (2.2)

+
αS(µ2

R)

2π
1
vs

C
(1)(s,v,w; µR,µF ,µ f )+O(α2

S)
]

,

where the flavour indices are left understood. The Born-level term in Eq. (2.2) has a sharp integrable
singularity atw = 1. At the LO, the systemX is formed by a singlemasslesspartona4(p4) and,
therefore,sX = p2

4 exactly vanishes thus leading to the factorδ (1−w) in Eq. (2.2). At higher
perturbative orders, the LO singularity is enhanced by logarithmic terms of the type ln(1−w). The
enhancement has a dynamical origin, and it is produced by soft-gluon radiation.

The presence of logarithmically-enhanced terms is evident from the knownNLO result. The
structure of the NLO termC (1) in Eq. (2.2) is customarily written (see, e.g., Eqs. (10) and (22) in
Ref. [25]) in the following form:

C
(1)(s,v,w; µR,µF ,µ f ) = C3(v)

(
ln(1−w)

1−w

)

+

+C2(v;s,µF ,µ f )

(
1

1−w

)

+

+ C1(v;s,µR,µF ,µ f )δ (1−w)+C0(1−w,v;s,µR,µF ,µ f ) . (2.3)

The last term on the right-hand side is a non-singular function ofw in the limit w → 1, namely,
C0(1−w,v) = O

(
(1−w)0

)
The functionsC3, C2 andC1 do not depend onw, and they multiply

functions ofw that are singular (and logarithmically-enhanced) atw→ 1. These singular functions
are expressed byδ (1−w) and customary ‘plus-distributions’,[(lnk(1−w))/(1−w)]+ , defined
over the range 1≥ w≥ 0.

Due to unitarity, the singular structure of virtual corrections must match the singular structure
of real corrections at the same perturbative order. This ensures the cancellation of poles and, at the
same time, fixes the coefficients of the threshold logarithms. In fact, functionsC3 andC2 can be
determined by the (IR) divergent terms, that have a process-independent structure. The constant
(i.e. non-logarithmic) termC1 contains instead an amount of process-dependent information that
can be extracted from thefinite (IR-subtracted) one-loop amplitude of the elastic process. More
importantly, its behaviour is controlled by non trivial colour-correlations effects, which play a role
also beyond the NLO, thanks to real-virtual interference. In order to derive anall-order resummed
cross-section for this process, one needs to keep colour-correlations under control, at each order in
perturbation theory (see Sect. 3). Explicitely, we need the expression ofthe one-loop amplitude as
a colour-spacevector. The available NLO QCD calculation of the single-hadron inclusive cross-
section [23, 24, 25] corresponds toprojectionsof the colour amplitude on the available colour
(flavour) channels.

A new calculation of the NLO cross-section at threshold is presented in [22]. The final result of
C1 is given in terms of abstract colour operators [26, 27], that describe radiation off a generic mass-
less parton. The key ingredient is the description of soft real radiation via the process-independent
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eikonal approximation, which makes the computation of thecolour-spaceamplitude possible. The
available phase-space of the recoiling jet allows non-soft collinear splitting. This is taken into ac-
count by an appropriate extension of the eikonal approximation, according to the Altarelli-Parisi
splitting kernels. The IR corrections are then complemented by theMS collinear counterterms of
the initial-state parton densities and the fragmentation function of the observedhadron.

Using the one-loop virtual contributions from Ref. [28], we have verified that we correctly re-
produce the NLO results of Ref. [25] for the NLO coefficientC (1) of the various partonic channels.
An additional check is given by the case in which the observed parton is replaced by a photon.
Using the one-loop virtual contribution for the processgq→ γq [30] and its crossing-related chan-
nels, we have explicitly verified that our result correctly reproduces theNLO coefficient of the
cross section for prompt-photon production [31, 32].

3. All-order soft-gluon resummation

Soft-gluon resummation up to NLL to the partonic cross section was performedin Ref. [21],
after integration over the rapidity of the observed hadron. The quantitative effect of resummation
is rather large, especially in the kinematical configurations that are encountered in experiments at
the typical energies of fixed-target collisions. We use the formalism of Ref. [10], and we present
the soft-gluon resummation formula that controls the logarithmic contributions to therapidity dis-
tribution of the transverse-momentum Using our general expression of theNLO cross section, we
determine the one-loop hard-virtual amplitude that enters into the colour-space factorization struc-
ture of the resummation formula.

To discuss the all-order resummation, we introduce the independent kinematical variables

xω = −
u+ t

s
, r =

u
t

, p2
T =

ut
s

, (3.1)

with phase-space boundaries 1≥ xω ≥ 0, r ≥ 0, p2
T ≥ 0. pT is the transverse momentum of the

observed partona3. In the centre–of–mass frame of the partonic collision, the variablexω is the en-
ergy fraction of the partona3 andr is related to its scattering angle. The near-threshold corresponds
to the region wherexω → 1, at fixed values ofpT andr. Using these variables,

p0
3
dσ̂a1a2→a3

d3p3
=

1
s
|M

(0)
a1a2a3a4|

2

16π2s
Σa1a2→a3(xω , r; p2

T ,µF ,µ f ) . (3.2)

The QCD radiative corrections are embodied in the functionΣa1a2→a3. We perform resummation
in Mellin space [1, 2]. The Mellin spaceN-momentsΣN of the functionΣ(xω) is

Σa1a2→a3,N(r) ≡
∫ 1

0
dxω xN−1

ω Σa1a2→a3(xω) = Σ res
a1a2→a3a4,N(r)+O(1/N) , (3.3)

whereΣ res
N includes theall-order resummation of the lnN terms. Contributions ofO(1/N) that

are subdominant in the near-threshold limit are neglected. The all-order expression ofΣ res
N can be

derived using the techniques of Ref. [10], and it reads

Σ res
a1a2→a3a4,N(r; p2

T ,µF ,µ f ) =

[

∏
i=1,2,3

∆ai ,Ni (Q
2
i ; µ2

Fi)

]
Ja4,N4(Q

2
4)

〈MH |∆
(int)
N (r; p2

T)|MH〉

|M (0)|2
. (3.4)
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The three radiative factors∆ai ,N (i = 1,2,3) embody soft-gluon radiation from the triggered partons
of the partonic process. The jet functionJa4,N4 includes soft and collinear radiation from the parton
a4 that recoils against the observed partona3 in the tree-level elastic scattering process. We have

∆a,N(Q2; µ2) = exp

{∫ 1

0
dz

zN−1−1
1−z

∫ (1−z)2Q2

µ2

dq2

q2 Aa(αS(q
2))

}
, (3.5)

Ja,N(Q2) = exp

{∫ 1

0
dz

zN−1−1
1−z

[∫ (1−z)Q2

(1−z)2Q2

dq2

q2 Aa(αS(q
2))+

1
2

Ba
(
αS

(
(1−z)Q2))]}

, (3.6)

whereAa(αS) andBa(αS) are perturbative functions. Their lower-order coefficients are

A(1)
a = Ca , A(2)

a =
1
2

CaK , K =

[
CA

(
67
18

−
π2

6

)
−

5
9

nF

]
, B(1)

a = −γa , (3.7)

where
γq = γq̄ =

3
2

CF , γg =
11
6

CA−
1
3

nF . (3.8)

The values ofNi andQ2
i in the argument of the radiative factors depend onr, p2

T ,N and involves
some degree of arbitrariness. The last factor in the right-hand side of Eq. (3.4) has a factorized
structure in colour space, and it includes all the colour correlation effects. The colour-space radia-
tive factor∆(int)

N embodies all the quantum-interference effects produced by soft-gluon radiation at
large angles and reads [10]

∆(int)
N (r; p2

T) = V †
N(r; p2

T) VN(r; p2
T) , (3.9)

VN(r; p2
T) = Pz exp

{∫ 1

0
dz

zN−1−1
1−z

Γ
(
αS

(
(1−z)2p2

T

)
; r

)}
. (3.10)

The operatorPz denotesz-ordering in the expansion of the exponential matrix. The soft-gluon
anomalous dimensionΓ(αS; r) is a colour space matrix, with perturbative expansion

Γ(αS; r) =
αS

π

[
T2

t ln(1+ r)+T2
u ln

1+ r
r

+ iπ T2
s

]
+

∞

∑
n=2

(αS

π

)n
Γ(n)(r) . (3.11)

The amplitude|MH〉 depends on the flavour, colour and kinematical variables of the tree-level
elastic scattering process. It embodies the residual terms ofΣ res

N that are constant, i.e. ofO(1) and
not logarithmically enhanced in the limitN → ∞. We write

|MH〉 = αS(µ2
R)

[
|M (0)〉+

αS(µ2
R)

2π
|M

(1)
H (µR)〉+

∞

∑
n=2

(
αS(µ2

R)

2π

)n

|M
(n)
H (µR)〉

]
, (3.12)

where we have omitted the explicit reference to the parton indicesa1a2a3a4. By expanding the
resummation formula in Eq. (3.4) to relativeO(αS) we can compare the logarithmic structure at
this order with our general NLO result for Eq. (2.3). The structure of the logarithmic terms agrees
and we can extract the NLO hard coefficient|M

(1)
H 〉. It contains the IR-subtracted NLO virtual

corrections and is directly related to the process-dependentC1 function of Sect. 2. Its expression is
given in [22] Eq. (53), in terms of abstract colour-correlations operators.
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The all-order structure of Eqs. (3.4) leads to the exponentiated resummationof the logarithmic
terms. After diagonalization [7, 29] of the anomalous dimension matrixΓ(αS; r), the resummed
radiative function of Eq. (3.4) can be written in the customary form [9, 21]

Σ res
a1a2→a3a4,N = ∑

I

C̃I ,a1a2a3a4(αS(p2
T)) exp

{
GI ,a1a2a3a4(αS(p2

T), lnN)
}

+O

(
1
N

)
, (3.13)

where the indexI labels the colour-space eigenstates ofΓ(αS; r), andC̃ andG are functions of
(r; p2

T ,µF ,µ f ). The exponent functionGI includes all the lnN terms, whileC̃I includes all the terms
that areO(1) in the largeN limit. The LL terms ofGI are controlled by the perturbative coefficient
A(1)

a , the NLL ones are determined byA(2)
a , B(1)

a andΓ(1). The first-order term of̃CI is computable
from the explicit expression of|M (1)

H 〉. Since we knowΓ(1) and |M (1)
H 〉, the colour interference

between these two terms is known. The interference is taken into account bythe correlated de-
pendence onI betweenC̃(1)

I andΓ(1)
I in the exponentGI . The complete explicit determination of

the NNLL terms inGI still requires the coefficientA(3)
a (given in [33]), the coefficientB(2)

a and the
second-order anomalous dimensionΓ(2). The bulk of the contributions toΓ(2)(r) is expected to be
proportional toΓ(1)(r) [27, 10] via the factorK/2. The coefficientB(2)

a could be extracted from
NNLL computations of related processes, such as DIS [3].

4. Summary

We have studied the single-particle inclusive cross section at large transverse momentum in
hadronic collisions, in the threshold limit in which the final-state system that recoils against the
triggered parton is constrained to have a small invariant mass. In this case the accompanying QCD
radiation is forced to be soft and/or collinear and the cancellation between virtual and real infrared
singular contributions is unbalanced, leading to large logarithmic terms in the coefficients of the
perturbative expansion. Using soft and collinear approximations of the relevant five-parton ma-
trix elements, we have computed the general structure of these logarithmically-enhanced terms in
colour space at NLO. The result of this NLO computation agrees with previous (colour summed)
results in the literature, and it is presented here in a compact and process-independent form. This
form is factorized in colour space and this allows us to explicitly disentangle colour interference
effects. We have then presented the resummation formula (3.4) that controlsthese contributions
to the pT-dependent cross section at fixed rapidity. The formula, which is valid atarbitrary loga-
rithmic accuracy, is written in terms of process-independent radiative factors and of a colour-space
radiative factor that takes into account soft-gluon radiation at large angles. All the radiative fac-
tors are explicitly given up to NLL accuracy. Our process-independent NLO result agrees with the
expansion of the resummation formula at the same perturbative order, and itallows us to extract
the explicit form of the (IR finite) hard-virtual amplitude|M (1)

H 〉 at relativeO(αS). The colour
interference between this one-loop amplitude and the NLL terms explicitly determines an entire
class of resummed contributions at NNLL accuracy. These resummation results are valid for both
spin-unpolarized and spin-polarized hard scattering [22].
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