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1. Introduction

Beta functions are fundamental quantities in any quantum field theory. They provide us with

information about the behavior of the theory at very high or very low energies. Therefore, they

reveal the possible phase transitions that the system can undergo and set limits on the validity of

the perturbative methods, that we heavily relay on. The computations of beta functions for non-

abelian Yang-Mills theories has a long history [1, 2], being among the first radiative corrections

ever achieved in such frameworks. It has lead to the discovery of the asymptotic freedom and

contributed decisively to the development of Quantum Chromodynamics (QCD) as the theory of

strong interaction.

Currently, the beta functions of QCD are known to the fourth loop-order [3, 4] and even the

first contributions at the fifth loop became recently available [5]. They are essential ingredients

for the extraction of the strong coupling constant at the Z-boson mass from the experimental data.

They also are required for the prediction of the hadronic Higgs production cross section and decay

rate at an accuracy level compatible with the experimental.

For the electroweak sector of the SM, the situation is slightly less evolved. The three-loop com-

putation of the beta functions for all SM couplings (gauge [6, 7], Yukawa [8, 9] and Higgs self-

coupling [10, 11]) was completed only during the last two years. This delay can be explained by

the huge number of diagrams that have to be calculated, by the more complicated infrared behav-

ior of the SM as compared to QCD and by the issue of spontaneous gauge symmetry breaking in

the SM (i.e. transition from the unbroken to the broken phase). Let us mention at this point, that

these recent calculations enabled the reduction of the theoretical uncertainty for the prediction of

the electroweak gauge couplings at a level compatible with the current experimental accuracy. In

addition, they are essential ingredients for the high precision analysis of the electroweak vacuum

stability, especially after the discovery of the Higgs boson and the measurement of its mass at per

mill level.

For supersymmetric extension of the standard model, the three-loop gauge beta functions are avail-

able already since long time [12], however the underlying computation is not based on component

field methods and resides heavily on the supersymmetric nature of the theory. A component field

confirmation of these results is presently available only for the Supersymmetric Quantum Chromo-

dynamics (SQCD) [13].

For non-supersymmetric extensions of the SM, there is the computation of the three-loop gauge

beta functions for a simple gauge group [14] with the obvious application to unified gauge theories

(GUT). However, any GUT beyond the minimal SU(5) model predicts a tower of heavy particles

between the electroweak- and the Planck-scale. For widely separated mass spectra, one has to

introduce effective theories valid at the various mass scales of the theory and use the Renormal-

ization Group Equations (RGEs) to relate predictions for physical observables at different scales.

Necessarily, the RGEs require the knowledge of the gauge beta functions also for non-simple gauge

groups. The two-loop contributions are known since long [15] and have a very compact expression

in terms of Casimir invariants. In this talk, I report on the calculation of the three-loop contribu-

tions the gauge beta functions for non-simple gauge groups, taking into account gauge, Yukawa-

and scalar interactions [16].
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2. Calculation

Let us consider a quantum field theory based on a non-simple gauge group defined as a direct

product of n simple groups G = G1⊗G2 · · ·⊗Gn. For generality, we consider each simple group as

non-abelian. The case of abelian groups can be easily derived from the general results by changing

the Casimir invariants accordingly. The particle content is made of n-types of gauge bosons, Dirac

and Majorana fermios, that for generality are chosen to be charged w.r.t. all the simple gauge

groups1, and two-types of scalars, that again for completeness are charged under all the simple

gauge groups. We choose two-types of scalars for simplicity and easiness of bookkeeping in latter

applications: i) To distinguish the scalars that develop a vacuum expectation value, for future

analysis related with spontaneous symmetry breaking; ii) To introduce scalars that may live in

other than D = 4− 2ε dimensions for latter use in supersymmetric theories. For example, in case

of the SM regulated in Dimensional Reduction, one scalar multiplet will describe the SM Higgs-

doublet and the other multiplet represents the ε-scalars.

Since we want to compute the gauge beta functions at three-loops, the maximal number of different

gauge bosons that can appear in one diagram is, of course, equal to three. Thus, in practical

calculations it is enough to work with a direct product of three different simple gauge groups.

For phenomenological applications, it is important to take into considerations also chiral theo-

ries. Because of the issue of γ5 in higher order computations, we work for the very beginning with

chiral fermions, defining as usual the left- and right-handed components FL = PLF and FR = PRF ,

with PL/R = 1∓γ5

2
. This setup translates into modified Feynman rules for vertices involving fermions

and a larger number of diagrams as compared to the minimal possible choice for non-chiral theo-

ries. Nevertheless, we can use this artificial separation of the fermionic degrees of freedom as an

internal check for the treatment of γ5 at three-loop order.

For completeness, let us introduce at this point the Lagrangian that describe this theory:

L = LYM +Lfix +LFP +LF +LS +LYuk , (2.1)

where the first three terms describe the pure gauge Lagrangian, LF stands for the genuine fermion

contribution, LS denotes the scalar Lagrangian, and the last term takes into account Yukawa inter-

actions defined as the interaction between a scalar and two fermions. Explicitly,

LYM = −
1

4

n

∑
i=1

F
a,i
µν Fµν ,a,i , F

a,i
µν = ∂µW

a,i
ν −∂νW

a,i
µ +gi f abc,iW

b,i
µ W

c,i
ν , (2.2)

where W µa,i is the gauge field, f abc,i denotes the structure constant and gi gives the coupling

constant for the gauge group Gi. For the gauge fixing term Lfix and the associated Fadeev-Popov

ghost contributions LFP we chose the Lorenz gauge.

The fermionic contribution reads

LF = i
NF

∑
f=FL,FR

ψ f D/ψ f , Dµ, f = ∂µ − i
n

∑
i=1

giR
a,i
f W

a,i
µ , (2.3)

1The case of non-interaction with some of the n-types of gauge bosons is obviously obtained by nullifying their

charge w.r.t. the corresponding groups.
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where Ψ f denotes the fermion fields, F
a,i
f is the generator of the group Gi in the fermionic repre-

sentation f . The sum over f runs over all fermion species and the sum over i encounters all the

gauge groups.

The scalar Lagrangian is given by

LS = ∑
s

(DµΦs)
†(DµΦs)+V (Φ) (2.4)

with the covariant derivative defined now for the group generators in the scalar representation S
a,i
s .

For the calculation of the gauge beta functions, only the quartic terms from the potential are of

interest, as can be easily understood from dimension counting. For the model under discussion,

they are described by the following potential

V4sc = λ1(Φ
†
1Φ1)

2 +λ2(Φ
†
2Φ2)

2 +λ12(Φ
†
1Φ1)(Φ

†
2Φ2) , (2.5)

where λk, k = 1,2,12 denotes the quartic self and mixed scalar couplings.

Furthermore, all the group theoretical factors we encountered in the three-loop order calcula-

tion can be expressed in terms of quadratic Casimir invariants of the relevant representations of the

gauge group. For a field transforming under the representation R of the gauge group G, where the

generators RA satisfy
[

RA,RB
]

= i f ABCRC , (2.6)

the Casimir invariants are defined as follows

Tr(RARB) = δ ABT (R) , RA
acRA

cb = δabC(R) ,

f ACD f BCD = δ ABC(G) , δ AA = d(G) . (2.7)

Here d(G) denotes the dimension of the group. Then the following relation holds as well

C(R)d(R) = T (R)N(G) , (2.8)

where d(R) = δaa is the dimension of representation R. In our final results we use the following

notation d(Ri), to specify the multiplicity of the representation R w.r.t. the gauge group Gi, with

R = F,S. For later convenience, we define also the multiplicity (dimension) of a representation w.r.t

a subset of the original direct product of simple groups as :

D(Ri) =
n

∏
j 6=i
j=1

d(R j) , D(Ri j) =
n

∏
k 6=i, j
k=1

d(Rk) , and D(Ri jk) =
n

∏
l 6=i, j,k

l=1

d(Rl) (2.9)

with R = F,S.

The coupling constants are expressed in terms of the corresponding gauge couplings through

the relations: αi = g2
i /(4π) with i = 1,2, . . . ,n. The beta functions are defined as

µ2 d

dµ2

αi

π
= βi({α j},ε) =−ε

αi

π

−
(αi

π

)2
[

ai +∑
j

αi

π
bi j +∑

j,k

α j

π

αk

π
ci jk + . . .

]

, (2.10)
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with i = 1,2, . . . ,n. The expression after the second equality sign gives the perturbative expansion.

In practice, the functions βi are obtained from the renormalization constants of the correspond-

ing couplings that are defined as αbare
i = µ2εZαi

αi. Exploiting the fact that the bare couplings are

µ-independent and taking into account that Zαi
may depend on all the other couplings leads to the

following formula

βi = −

[

ε
αi

π
+

αi

Zαi

7

∑
j, j 6=i

∂Zαi

∂α j

β j

]

(

1+
αi

Zαi

∂Zαi

∂αi

)−1

, (2.11)

From Eq. (2.11) it is clear that the renormalization constants Zαi
(i = 1,2,3) have to be computed

up to three-loop order. In principle each vertex containing the gauge coupling αi at tree level can

be used in order to obtain Zαi
via

Zαi
=

(Zvrtx)
2

∏k Zk,wf

, (2.12)

where Zvrtx stands for the renormalization constant of the vertex and Zk,wf for the wave function

renormalization constant; k runs over all external particles.

We have computed Zαi
using the ghost-gauge boson vertices as they are the most economical

ones w.r.t. number of diagrams. For abelian gauges, the renormalization constant for ghost-gauge

boson vertex vanishes through three loops, that is a valuable consistency check of the setup. For

comparison with beta functions in super-symmetric theories, we also computed the Yukawa cou-

pling renormalization at three-loop order.

For the present calculation, we use a well-tested chain of programs: QGRAF [17] generates all

contributing Feynman diagrams. The output is passed via q2e [18, 19], which transforms Feynman

diagrams into Feynman amplitudes, to exp [18, 19] that generates FORM[20] code. The latter is

processed by MINCER [21] that computes analytically massless propagator diagrams up to three

loops and outputs the ε expansion of the result.

3. Results

The three-loop gauge beta function reads

βαi
=−ε

αi

π
+
(αi

π

)2 1

4

[

−
11

3
C(Gi)+∑

F

2

3
T (Fi)D(Fi)+∑

S

1

3
T (Si)D(Si)

]

+
(αi

π

)2 1

16

{

αi

π

[

−
34

3
C(Gi)

2 +∑
F

[
10

3
C(Gi)+2C(Fi)]T (Fi)D(Fi)

+∑
S

[
2

3
C(Gi)+4C(Si)]T (Si)D(Si)

]

+∑
j 6=i

α j

π

[

∑
F

2C(Fj)d(Fj)T (Fi)D(Fi j)

+∑
S

4C(S j)d(S j)T (Si)D(Si j)

]

+∑
F

[

−T (Fi)
1

π
Tr(YFR

Y
†
FR
)

]}

+
(αi

π

)3 1

64

{

αi

π

[

−
2857

54
C(Gi)

3 +∑
F

[
1415

54
C(Gi)

2 +
205

18
C(Gi)C(Fi)−C(Ri)

2]T (Fi)D(Fi)

+∑
S

[
545

108
C(Gi)

2 +
1129

36
C(Gi)C(Si)+

29

2
C(Si)

2]T (Si)D(Si)
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−∑
F

∑
S

[
29

27
C(Gi)+

23

18
C(Fi)+

25

9
C(Si)]T (Ri)T (Si)D(Fi)D(Si)

− ∑
Fm,Fn

[
79

54
C(Gi)+

11

9
C(Fm,i)]T (Fm,i)T (Fn,i)D(Fm,i)D(Fn,i)

+ ∑
Sm,Sn

[
1

27
C(Gi)−

49

18
C(Sm,i)]T (Sm,i)T (Sn,i)D(Sm,i)D(Sn,i)

]

+∑
j 6=i

α j

π

[

∑
F

2[2C(Gi)−C(Fi)]T (Ri)C(Fj)D(Fi j)+∑
S

[
25

2
C(Gi)+29C(Si)]T (Si)C(S j)D(Si j)

]

+
(αi

π

)2 1

64

{

∑
j 6=k

α j

π

αk

π

[

−∑
F

C(Fj)C(Fk)T (Fi)D(Fi jk)−∑
S

2C(S j)C(Sk)T (Si)D(Si jk)

]

+∑
j

(α j

π

)2
[

∑
F

[
133

18
C(G j)−C(Fj)]C(Fj)T (Fi)D(Fi j)

+∑
S

[
679

36
C(G j)+

29

2
C(S j)]C(S j)T (Si)D(Si j)

− ∑
Fm,Fn

11

9
C(Fm, j)T (Fn, j)T (Fm,i)D(Fm,i j)D(Fn, j)− ∑

Sm,Sn

49

18
C(Sm, j)T (Sn, j)T (Sm,i)D(Sm,i j)d(Sn, j)

−∑
S

∑
F

[
25

9
C(S j)T (Si)T (Fj)+

23

18
C(Fj)T (Fi)T (S j)]d(Fi j)d(Si j)

]

+β Yuk
2 +β 4sc

2 , (3.1)

where the last two terms the contributions from Yukawa and scalar quartic interactions denote.

They do not factorise as is the case for the pure gauge contributions and require a dedicated analy-

sis [14, 16]. The can be actually easily derived from the results of Ref. [14], via obvious replace-

ments. We compared the above results with explicit calculations for the SM [6, 7], SU(5)+24F [22],

and SQC [12, 13] and found complete agreement.

Let us stress at the point the absence in the beta functions of transcendental numbers and of higher

Casimir invariants, although they are present at the diagram level. Another interesting point is that

the semi-naive treatment of γ5 as proposed in Ref. [23] is sufficient also for this calculation.
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