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1. Introduction

Although renormalizability provides a powerful guidingirpiple when searching for fully
consistent Quantum Field Theories (QFT) at the fundaméenal, it may very well be that not
all interactions admit a microscopic description in ternigemormalizable or free-of-infinities
theories. On the other hand, the physics content of the @oormalizable QFTs is much reacher,
since operators of higher dimensionality are allowed, thatbe useful in the effective description
of physical phenomena at energies at whichtthe theory is unknown (or non-perturbative).

Non-renormalizable theories are normally dealt with wittlie same framework of the renor-
malizable ones at the price of giving up a bit of predictivdityeach additional perturbative order:
operators needed to re-absorb infinities generated by tivevintiial loops are introduced at the
fundamental level, that require to be fixed by experimentaleovables. Then the theory is order-
by-order predictive, but an increasingly large number dagmints is needed, and predictivity is
totally lost in the infinite loop limit.

In this contribution, | illustrate an alternative proceelusince an infinite energy is required
to resolve a vanishing space-time distance between twdspains reasonable to assume that all
ultraviolet (UV) infinities are non-physical/unobservaldegrees of freedom - generated by the
loop expansion - that have to be separated from the phygeatrsim. The UV problem can then
be recast as the problem of separating infinities and physias unambiguous way, respecting -
at the same time - the symmetries of the Lagrangian. Suchaaatém can be naturally obtained
within the FDR approach of [1], which allows to

e reproduce the physics of the renormalizable theoriesdbwotip approach);

e give a sensible meaning to the non-renormalizable QFTsdtmm approach).

Known one-loop [2, 3] and two-loop [4] results have been ndgere-derived in FDR, showing
its consistency and correctness in the bottom-up directiorthe next section, | review the basic
features of FDR, while section 3 describes how FDR works éribn-renormalizable case.

2. Bottom-up

2.1 FDR integration

In FDR, the UV infinities are subtracted at timegrandlevel by judiciously splitting the orig-
inal integrand)(qy, . . . ,g¢) of an¢-loop functiont in two parts e (d, - - ,d¢) andJe ¢ (qy, - -, qe).-
The former piece collects integrands which would give djeeices upon integration, while the
latter generates the finite contribution. To avoid the omnwe of infrared divergences tha0
propagator prescription has to be made explicit by ideinigfyit with a vanishing mass-u? and
taking the limity — O outside integration. The rationale for this separatiothhé the loopinte-
grandsin Jnge(q, - - -, Q) are allowed to depend gn, but not on physical scaleso that the physics
is entirely contained idg ¢(q1, . ..,0). As an explicit two-loop example consider
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Lon,...,q are integration momenta adday, . ..,q,) can be a tensor.
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with
Di=0f—mE, Dp=05—mj, D=0~ Mk, Gio=Ch+0, O =of —p®. (2.2)
The needed splitting can be obtained through a repeated tise identities
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where divergent integrands are written between squard&diacThen
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The FDR integral over the original integrad(ty, ... ,q,) is definedas?

/[d4q1]... d*q]I(qu, ..., q) = Ei”o/ d*a...d*q Iee(q,. . ), (2.6)

and the expansion needed to extd&at(qs, . .. g¢) is called the=DR defining expansioof J(qs, . .., 0).
For example, from eq. (2.5),

. o B .
/ [d*ay) [d4Q2]539|%29|151_2 - ETO d*qud*2 75 (0. G2).- (2.7)
i

The advantage of using FDR integration in gauge QFTs is thabhcodes the UV subtraction
directly into its definition, maintaining, at the same time, the twoparties needed to prove Ward
Identities, i.e.

i) invariance under shift of any integration variable;
i) simplifications among numerators and denominators.

The first property follows by rewriting FDR integrals as aft@nilifferences of UV divergent inte-
grals:

/[d4q1]... [d*q] I(qy,...,q) = ELnO/d”ql...d”qg (J(ql,...,qé) —J|NF(q1,...,q4)) ., (2.8)

2FDR integration is denoted by the symbdfq;].
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where the r.h.s. is regulated in dimensional regularinatitDR). The second property is guaran-
teed by construction, provided agy generated by Feynman rules is considered?as g2 — 2 4.
For example, from the defining expansions of the three iatetg:

02 1 1
d4anlid? $:/d4 dhp] — rr12/d4 ] ——— . (2.9
[ldau) Bl w55y, = | e+ [ d s s 29
For consistency, tensor decomposition works as in theviatig example
a~B ap 2 aB 0+ 112
A d4ap] =2 = 97 [igagiddap)—— — 9 [y déap] LT L (210
[t el gt = a5ty = 7 [ [taldalgs o 210
where, from eq. (2.5),
? . Jap IE5 (th, )
4] [d%0p] = et = lim p2 [ diqudiqp PR 2 2.11
/ [d" ][ caz]DiDle2 fim u qud*cp 7 (2.11)

It is interesting to investigate how FDR integrals dependuon The first term in the r.h.s. of
ed. (2.8) does not depend pnbecause lim_,o can be moved inside integration. On the other hand,
any polynomially divergent integral ifing(qs, - - - ,0¢) cannot contribute either, being proportional
to positive powers ofi. Therefore, theu dependence of the l.h.s. of eq. (2.8) is entirely due to
powers of Irfu/ur) ® generated by the logarithmically divergent subtracteegrdls. Therefore:

i) FDR integrals depend onm logarithmically;

i) if all powers of In(u/uRr) are moved to the L.h.s. of eq. (2.8)the lim,_,0 can be taken by
formally trading In{u) for In(;).

Then, FDR integralslo not depend on any cut dfit only on the renormalization scalg.

2.2 Infrared and collinear infinities

The FDR treatment of the UV infinities is compatible with thregence of Infrared (IR) or
collinear (CL) divergences in massless theories. The batsservation is that the-i0 = —u?
prescription naturally regulates any IR/CL behavior in khep integrals: IR/CL divergent loop
integrals are unambiguously defined by taking the limit> O outside integration - as in the UV
case - after subtracting divergent integrands, when nagesEhis should be matched with a con-
sistent treatment of IR/CL infinities generated in the reat pf the calculation, that corresponds to
a massless calculation of the real matrix element squMeé&dntegrated over a phase-space where
all would-be-massless patrticles are given a massith 4 — 0. This can be understood because

3This is just one option, since the dependencammynUV regulator drops in the difference.

4Only one kind ofu? exists. The indexin u? only denotes that the denominator expansion in fromoghould
bethe same one used fof q

5In the absence of IR divergences.

6,ir is the arbitrary renormalization scale of DR, that can aksthipught as the arbitrary scale at which one decides
to subtract the logarithmically divergences.

"From now on, the FDR integration is redefined by assuming this
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Figure 1: Logarithmic scalar topologies (up to three loops) sub&ddty FDR. Tensors are also reducible
to them. Dotted and double-dotted propagators are raiseté@yand two additional powers, respectively.

e a massless calculation (|2 preserves gauge invariance;

e unitarity relates theri0 = —pu? deformation in a masslesg@ loop propagator to a phase-
space integration with? = 2.

Such a procedure has been proven to work at one loop in [3].

2.3 Renormalization in FDR

In FDR any calculation is UV finite by construction. Neveldss it is illuminating to consider
the subtraction embedded in the definition of FDR integrahasoperation of redefining the vac-
uum: order by order in the perturbation theory observabigsigk is defined with respect to a new
vacuum, obtained by subtracting the unphysical divergentigurations (which can be interpreted
asvacuum bubblgscontained inng (s, - .-, qr). All polynomially divergent vacuum bubbles can
be subtractedt no price while the logarithmic ones, classified in figure 1 up to tHoemps, leave
logarithms ofpur. This interpretation, dubbet@iopological Renormalizatiofb], differs from the
usual renormalization procedure - used, for example, in DRkat the Lagrangiad? is left un-
touchedand no counterterms need to be added. What changes ordeddayismot.Z, but the
vacuum, so that the parametexs(i = 1 : m) upon which.Z(py,..., pm) depends - i.e. couplings
and masses - remain finite. However, they still have to beetinio experimental observables by
means of a finite renormalization. In particularmeasurements

ﬁiTH(pla s pm) — @EXP

are needed to determimgin terms of observable§®*" and corrections computed at the loop level
£ one is working:

pi= pif7|00p(ﬁ]|-EXP’ ceey ﬁrl’%xp) = 5I

Then

ﬁml(mv ceey pm)
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is a finite prediction of the QFT and, if the theory is renonzedble, the dependence pg drops:

aﬁml(ma vy 5“’\)
OUR

The absence of counterterms simplifies FDR loop calculati@onsider, for example [6], the
one-loop photon self-energy in QED

p
MZ”@”(DZ), Tap =9apP>— PaPp, M(P?)=1M_1+Mo+eM;.

In DR, the corresponding two-loop computation requiresatidition of one-loop couterterms such
that

—0. (2.12)

NWONW + e = iTygMo+O(€).

Therefore, at two loops,

w@@m + w@m + W/\QN + venen =iTaaMN3+0(¢).

In FDR, the product of two one-loop diagrams is simply thedpici of the two finite parts, so that
one directly obtains

WO = TagMorl?)

with Mepr(p?) = Mo. The previous example also shows thébop integrals are directly re-usable
in (¢+1)-loop calculations. For instance, the two-loop facabile FDR integral

[d*ai] / [d*q]
X (2.13)
/ (@ —mpe ) (- mp)P
is simply the product of two one-loop FDR integrals. Tianhotthe case in DR, where further
expanding ire is required.

3. Top-down

It is interesting to extend the FDR framework to a non-reradizable QFT described by a
LagrangianZyr. Things remain unchanged up to eq. (2.12), which - in genésaho longer true.
Therefore

ﬁml(ﬁb vy §m> In HR)
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may depend on the arbitrary scale. However, if a particular combination of observables is
constructed, in whichur disappears, it can still be unambiguously predicteddy. In principle
this can be achieved wiflast oneadditional observable #5%5 - by solving the equation

m+2
ﬁrT'ITZ(FTlr"a 5m7|n I-'lll?) - rl?)ﬁl:2)7 (31)
and settingur = g in ﬁml. Notice that it is crucial the fact that, in FDR, the origiralt-off

i — 0 is traded with an adjustable scalg. In addition, one has to assume that the solution of
eg. (3.1) still allows a perturbative treatment, i.e.

P Inpg| <1, (3.2)

whereg is the coupling constant of the theory.

The outlined strategy is rather new and it has not been wiifigoractice, yet. More inves-
tigation is needed, the first obvious case study being a enormalizable theory for which the
renormalizable counterpart is known (such as four-ferncimmtact interactions vs the electroweak
standard model). Finally, it is worth mentioning that ondree to consider a theory described
by “Aur as an effective one. The difference of FDR with respect tottaditional approach to
non-renormalizable theories is a gain in predictivity: gt@ndard way of absorbing infinities into
the parameters of/\r forcesa change in its form - at higher perturbative orders - suchriba
fundamental interactions have to be fixed in terms of expental measurements. On the contrary,
no change inZr is required by FDF, and the extra measurement in eq. (3.1) is all one needs
to fix the theory. The meaning of this measurement is disgilitanthe effects of the unknown
UV completion of Z\r - parametrized with a logarithmic dependencerp from the physical
spectrum.

4. Conclusions

FDR can be used as an easier approach to higher order calnslat QFTs. It is simpler than
DR because:

e order-by-order renormalization is avoided;

e afinite renormalization is only required to fix the parametrthe theory in terms of exper-
imental observables;

e /-loop integrals are directly re-usable ift(Q)-loop calculations, with no need of further
expanding ire.

In addition, infrared and collinear divergences can betdeith within the same four-dimensional
framework used to cope with the ultraviolet infinities.

FDR also allows a novel interpretation of non-renormaligaheories in which predictivity is
restored. The basic idea is that infinities are unphysicadlcam be separated - in a gauge invariant
way - from the physical spectrum. The remnant of this opemnais a dependence on the renor-
malization scale in physical observables, which, howesaar,be fitted via one extra measurement.
Explicit calculations in non-renormalizable QFTs are regktb consolidate this interpretation.

80f course, one might still need to add interactions to repcecexperimental data.
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