
P
o
S
(
R
A
D
C
O
R
 
2
0
1
3
)
0
6
1

A fresh look at (non)renormalizable QFTs

Roberto Pittau∗†

Departamento de Física Teórica y del Cosmos and CAFPE, Campus Fuentenueva s. n.,
Universidad de Granada, E-18071 Granada, Spain
E-mail: pittau@ugr.es

Abandoning dimensional regularization allows important simplifications in loop calculations and

gives a handle to interpret non-renormalizableQuantum Field Theories. I review the current status

of FDR, a fully four-dimensional approach to the ultraviolet problem.

11th International Symposium on Radiative Corrections (Applications of Quantum Field Theory to
Phenomenology) (RADCOR 2013),
22-27 September 2013
Lumley Castle Hotel, Durham, UK

∗Speaker.
†Work performed in the framework of the ERC grant 291377 (LHCtheory), the MICINN project FPA2011-22398

(LHC@NLO) and the Junta de Andalucía project P10-FQM-6552.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/



P
o
S
(
R
A
D
C
O
R
 
2
0
1
3
)
0
6
1

A fresh look at (non)renormalizable QFTs Roberto Pittau

1. Introduction

Although renormalizability provides a powerful guiding principle when searching for fully
consistent Quantum Field Theories (QFT) at the fundamentallevel, it may very well be that not
all interactions admit a microscopic description in terms of renormalizable or free-of-infinities
theories. On the other hand, the physics content of the non-renormalizable QFTs is much reacher,
since operators of higher dimensionality are allowed, thatcan be useful in the effective description
of physical phenomena at energies at which thetrue theory is unknown (or non-perturbative).

Non-renormalizable theories are normally dealt with within the same framework of the renor-
malizable ones at the price of giving up a bit of predictivityat each additional perturbative order:
operators needed to re-absorb infinities generated by the new virtual loops are introduced at the
fundamental level, that require to be fixed by experimental observables. Then the theory is order-
by-order predictive, but an increasingly large number of data points is needed, and predictivity is
totally lost in the infinite loop limit.

In this contribution, I illustrate an alternative procedure: since an infinite energy is required
to resolve a vanishing space-time distance between two points, it is reasonable to assume that all
ultraviolet (UV) infinities are non-physical/unobservable degrees of freedom - generated by the
loop expansion - that have to be separated from the physical spectrum. The UV problem can then
be recast as the problem of separating infinities and physicsin an unambiguous way, respecting -
at the same time - the symmetries of the Lagrangian. Such a separation can be naturally obtained
within the FDR approach of [1], which allows to

• reproduce the physics of the renormalizable theories (bottom-up approach);

• give a sensible meaning to the non-renormalizable QFTs (top-down approach).

Known one-loop [2, 3] and two-loop [4] results have been recently re-derived in FDR, showing
its consistency and correctness in the bottom-up direction. In the next section, I review the basic
features of FDR, while section 3 describes how FDR works in the non-renormalizable case.

2. Bottom-up

2.1 FDR integration

In FDR, the UV infinities are subtracted at theintegrandlevel by judiciously splitting the orig-
inal integrandJ(q1, . . . ,qℓ) of anℓ-loop function1 in two parts,JINF(q1, . . . ,qℓ) andJF,ℓ(q1, . . . ,qℓ).
The former piece collects integrands which would give divergences upon integration, while the
latter generates the finite contribution. To avoid the occurrence of infrared divergences the+i0
propagator prescription has to be made explicit by identifying it with a vanishing mass−µ2 and
taking the limitµ → 0 outside integration. The rationale for this separation isthat the loopinte-
grandsin JINF(q1, . . . ,qℓ) are allowed to depend onµ , but not on physical scales, so that the physics
is entirely contained inJF,ℓ(q1, . . . ,qℓ). As an explicit two-loop example consider

Jαβ (q1,q2) =
qα

1 qβ
1

D̄3
1D̄2D̄12

, (2.1)

1q1, . . . ,qℓ are integration momenta andJ(q1, . . . ,qℓ) can be a tensor.
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with

D̄1 = q̄2
1−m2

1 , D̄2 = q̄2
2−m2

2 , D̄12 = q̄2
12−m2

12, q12 = q1+q2 , q̄2
j = q2

j −µ2 . (2.2)

The needed splitting can be obtained through a repeated use of the identities

1
D̄ j

=
1

q̄2
j

+
m2

j

q̄2
j D̄ j

,
1

q̄2
12

=
1

q̄2
2

−
q2

1+2(q1 ·q2)

q̄2
2q̄2

12

,
1

q̄2
2

=
1

q̄2
1

−
q2

12−2(q1 ·q12)

q̄2
1q̄2

2

, (2.3)

and reads

Jαβ (q1,q2) = qα
1 qβ

1

{[

1

q̄6
1q̄2

2q̄2
12

]

+

(

1

D̄3
1

−
1

q̄6
1

)([

1

q̄4
2

]

−
q2

1+2(q1 ·q2)

q̄4
2q̄2

12

)

+
1

D̄3
1q̄2

2D̄12

(

m2
2

D̄2
+

m2
12

q̄2
12

)}

, (2.4)

where divergent integrands are written between square brackets. Then

Jαβ
INF(q1,q2) = qα

1 qβ
1

{[

1

q̄6
1q̄2

2q̄2
12

]

+

(

1

D̄3
1

−
1

q̄6
1

)[

1

q̄4
2

]}

and

Jαβ
F,2 (q1,q2) = qα

1 qβ
1

{

1

D̄3
1q̄2

2D̄12

(

m2
2

D̄2
+

m2
12

q̄2
12

)

−

(

1

D̄3
1

−
1

q̄6
1

)

q2
1+2(q1 ·q2)

q̄4
2q̄2

12

}

. (2.5)

The FDR integral over the original integrandJ(q1, . . . ,qℓ) is definedas2

∫

[d4q1] . . . [d
4qℓ]J(q1, . . . ,qℓ)≡ lim

µ→0

∫

d4q1 . . .d
4qℓ JF,ℓ(q1, . . .qℓ) , (2.6)

and the expansion needed to extractJF,ℓ(q1, . . .qℓ) is called theFDR defining expansionof J(q1, . . . ,qℓ).
For example, from eq. (2.5),

∫

[d4q1][d
4q2]

qα
1 qβ

1

D̄3
1D̄2D̄12

= lim
µ→0

∫

d4q1d4q2 Jαβ
F,2 (q1,q2) . (2.7)

The advantage of using FDR integration in gauge QFTs is that it encodes the UV subtraction
directly into its definition, maintaining, at the same time, the two properties needed to prove Ward
Identities, i.e.

i) invariance under shift of any integration variable;

ii) simplifications among numerators and denominators.

The first property follows by rewriting FDR integrals as a finite differences of UV divergent inte-
grals:

∫

[d4q1] . . . [d
4qℓ]J(q1, . . . ,qℓ) = lim

µ→0

∫

dnq1 . . .d
nqℓ

(

J(q1, . . . ,qℓ)−JINF(q1, . . . ,qℓ)
)

, (2.8)

2FDR integration is denoted by the symbol[d4qi ].
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where the r.h.s. is regulated in dimensional regularization 3 (DR). The second property is guaran-
teed by construction, provided anyq2

i generated by Feynman rules is considered as ¯q2
i = q2

i −µ2
i

4.
For example, from the defining expansions of the three integrands:

∫

[d4q1][d
4q2]

q̄2
1

D̄3
1D̄2D̄12

=

∫

[d4q1][d
4q2]

1

D̄2
1D̄2D̄12

+m2
1

∫

[d4q1][d
4q2]

1

D̄3
1D̄2D̄12

. (2.9)

For consistency, tensor decomposition works as in the following example

∫

[d4q1][d
4q2]

qα
1 qβ

1

D̄3
1D̄2D̄12

=
gαβ

4

∫

[d4q1][d
4q2]

q2
1

D̄3
1D̄2D̄12

=
gαβ

4

∫

[d4q1][d
4q2]

q̄2
1+µ2

1

D̄3
1D̄2D̄12

, (2.10)

where, from eq. (2.5),

∫

[d4q1][d
4q2]

µ2
1

D̄3
1D̄2D̄12

= lim
µ→0

µ2
∫

d4q1d4q2
gαβ Jαβ

F,2 (q1,q2)

q2
1

. (2.11)

It is interesting to investigate how FDR integrals depend onµ 5. The first term in the r.h.s. of
eq. (2.8) does not depend onµ , because limµ→0 can be moved inside integration. On the other hand,
any polynomially divergent integral inJINF(q1, . . . ,qℓ) cannot contribute either, being proportional
to positive powers ofµ . Therefore, theµ dependence of the l.h.s. of eq. (2.8) is entirely due to
powers of ln(µ/µR)

6 generated by the logarithmically divergent subtracted integrals. Therefore:

i) FDR integrals depend onµ logarithmically;

ii) if all powers of ln(µ/µR) are moved to the l.h.s. of eq. (2.8)7, the limµ→0 can be taken by
formally trading ln(µ) for ln(µr ).

Then, FDR integralsdo not depend on any cut offbut only on the renormalization scaleµR.

2.2 Infrared and collinear infinities

The FDR treatment of the UV infinities is compatible with the presence of Infrared (IR) or
collinear (CL) divergences in massless theories. The basicobservation is that the+i0 = −µ2

prescription naturally regulates any IR/CL behavior in theloop integrals: IR/CL divergent loop
integrals are unambiguously defined by taking the limitµ → 0 outside integration - as in the UV
case - after subtracting divergent integrands, when necessary. This should be matched with a con-
sistent treatment of IR/CL infinities generated in the real part of the calculation, that corresponds to
a massless calculation of the real matrix element squared|M|2 integrated over a phase-space where
all would-be-massless particles are given a massµ , with µ → 0. This can be understood because

3This is just one option, since the dependence onanyUV regulator drops in the difference.
4Only one kind ofµ2 exists. The indexi in µ2

i only denotes that the denominator expansion in front ofµ2 should
be the same one used for q2

i .
5In the absence of IR divergences.
6µR is the arbitrary renormalization scale of DR, that can also be thought as the arbitrary scale at which one decides

to subtract the logarithmically divergences.
7From now on, the FDR integration is redefined by assuming this.
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Figure 1: Logarithmic scalar topologies (up to three loops) subtracted by FDR. Tensors are also reducible
to them. Dotted and double-dotted propagators are raised byone and two additional powers, respectively.

• a massless calculation of|M|2 preserves gauge invariance;

• unitarity relates the+i0=−µ2 deformation in a massless 1/q̄2 loop propagator to a phase-
space integration withq2 = µ2.

Such a procedure has been proven to work at one loop in [3].

2.3 Renormalization in FDR

In FDR any calculation is UV finite by construction. Nevertheless it is illuminating to consider
the subtraction embedded in the definition of FDR integral asthe operation of redefining the vac-
uum: order by order in the perturbation theory observable physics is defined with respect to a new
vacuum, obtained by subtracting the unphysical divergent configurations (which can be interpreted
asvacuum bubbles) contained inJINF(q1, . . . ,qℓ). All polynomially divergent vacuum bubbles can
be subtractedat no price, while the logarithmic ones, classified in figure 1 up to threeloops, leave
logarithms ofµR. This interpretation, dubbedTopological Renormalization[5], differs from the
usual renormalization procedure - used, for example, in DR -in that the LagrangianL is left un-
touchedand no counterterms need to be added. What changes order by order is notL , but the
vacuum, so that the parameterspi (i = 1 : m) upon whichL (p1, . . . , pm) depends - i.e. couplings
and masses - remain finite. However, they still have to be linked to experimental observables by
means of a finite renormalization. In particular,mmeasurements

O
TH
i (p1, . . . , pm) = O

EXP
i

are needed to determinepi in terms of observablesOEXP
i and corrections computed at the loop level

ℓ one is working:

pi = pℓ−loop
i (OEXP

1 , . . . ,OEXP
m )≡ p̄i

Then

O
TH
m+1(p̄1, . . . , p̄m)
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is a finite prediction of the QFT and, if the theory is renormalizable, the dependence onµR drops:

∂OTH
m+1(p̄1, . . . , p̄m)

∂ µR
= 0. (2.12)

The absence of counterterms simplifies FDR loop calculations. Consider, for example [6], the
one-loop photon self-energy in QED

α

p

β
= iTαβ Π(p2) , Tαβ = gαβ p2− pα pβ , Π(p2) = 1

ε Π−1+Π0+ ε Π1 .

In DR, the corresponding two-loop computation requires theaddition of one-loop couterterms such
that

+ • = iTαβ Π0+O(ε) .

Therefore, at two loops,

+ • + • + • • = iTαβ Π2
0+O(ε) .

In FDR, the product of two one-loop diagrams is simply the product of the two finite parts, so that
one directly obtains

= iTαβ Π2
FDR(p

2) ,

with ΠFDR(p2) = Π0. The previous example also shows thatℓ-loop integrals are directly re-usable
in (ℓ+1)-loop calculations. For instance, the two-loop factorizable FDR integral

∫

[d4q1]

(q̄2
1−m2

1)
α ×

∫

[d4q2]

(q̄2
2−m2

2)
β (2.13)

is simply the product of two one-loop FDR integrals. Thatis not the case in DR, where further
expanding inε is required.

3. Top-down

It is interesting to extend the FDR framework to a non-renormalizable QFT described by a
LagrangianLNR. Things remain unchanged up to eq. (2.12), which - in general- is no longer true.
Therefore

O
TH
m+1(p̄1, . . . , p̄m, ln µR)
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may depend on the arbitrary scaleµR. However, if a particular combination of observables is
constructed, in whichµR disappears, it can still be unambiguously predicted byLNR. In principle
this can be achieved withjust oneadditional observable -OEXP

m+2 - by solving the equation

O
TH
m+2(p̄1, . . . , p̄m, ln µ ′

R) = O
EXP
m+2 , (3.1)

and settingµR = µ ′
R in OTH

m+1. Notice that it is crucial the fact that, in FDR, the originalcut-off
µ → 0 is traded with an adjustable scaleµR. In addition, one has to assume that the solution of
eq. (3.1) still allows a perturbative treatment, i.e.

|g2 lnµ ′
R|< 1, (3.2)

whereg is the coupling constant of the theory.
The outlined strategy is rather new and it has not been verified in practice, yet. More inves-

tigation is needed, the first obvious case study being a non-renormalizable theory for which the
renormalizable counterpart is known (such as four-fermioncontact interactions vs the electroweak
standard model). Finally, it is worth mentioning that one isfree to consider a theory described
by LNR as an effective one. The difference of FDR with respect to thetraditional approach to
non-renormalizable theories is a gain in predictivity: thestandard way of absorbing infinities into
the parameters ofLNR forcesa change in its form - at higher perturbative orders - such that new
fundamental interactions have to be fixed in terms of experimental measurements. On the contrary,
no change inLNR is required by FDR8, and the extra measurement in eq. (3.1) is all one needs
to fix the theory. The meaning of this measurement is disentangling the effects of the unknown
UV completion ofLNR - parametrized with a logarithmic dependence onµR - from the physical
spectrum.

4. Conclusions

FDR can be used as an easier approach to higher order calculations in QFTs. It is simpler than
DR because:

• order-by-order renormalization is avoided;

• a finite renormalization is only required to fix the parameters of the theory in terms of exper-
imental observables;

• ℓ-loop integrals are directly re-usable in (ℓ+1)-loop calculations, with no need of further
expanding inε .

In addition, infrared and collinear divergences can be dealt with within the same four-dimensional
framework used to cope with the ultraviolet infinities.

FDR also allows a novel interpretation of non-renormalizable theories in which predictivity is
restored. The basic idea is that infinities are unphysical and can be separated - in a gauge invariant
way - from the physical spectrum. The remnant of this operation is a dependence on the renor-
malization scale in physical observables, which, however,can be fitted via one extra measurement.
Explicit calculations in non-renormalizable QFTs are needed to consolidate this interpretation.

8Of course, one might still need to add interactions to reproduce experimental data.
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