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A complete quantization of an approximately homogeneous and isotropic universe with small
scalar perturbations and compact flat spatial topology is carried out by means of a hybrid ap-
proach in Loop Quantum Cosmology. The matter content is provided by a minimally coupled
massive scalar field. The homogenous sector of the geometry degrees of freedom is polymeri-
cally quantized, while the inhomogeneities are quantized employing Fock techniques. The Fock
quantization adopted is a privileged one, picked out in a unique way by criteria of dynamical
unitarity and symmetry invariance in the context of quantum field theory in curved space-times.
We characterize the physical states of this quantum theory and investigate some aspects of the
resulting physics, including the connection with standard cosmological perturbation theory.
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Cosmological perturbations in LQC

1. Introduction and outline

It is generally accepted that the universe that we observe is approximately homogeneous in
an appropriate range of large scales, and isotropic in the sense that no direction is preferential,
as confirmed by the temperature distribution of the cosmic microwave background (CMB) (and
theoretically supported by the EGS theorem for certain matter contents [1]). This homogeneous
and isotropic universe on average can be described by a Friedmann-Robertson-Walker (FRW) cos-
mology, totally characterized by the type of curvature of the spatial sections seen by comoving
observers (namely, a positive, zero, or negative curvature, corresponding to elliptic, Euclidean, or
hyperbolic geometry, respectively) and by a scale factor that changes in the comoving time and
dictates the modification experienced in distances. The large scale structures seen in our universe,
as well as the anisotropies detected in the CMB, are thought to have originated in inhomogeneities
of the primordial universe generated by quantum fluctuations of the geometry and matter fields.
These inhomogeneities are usually considered sufficiently small as to allow their treatment as per-
turbations, superposed to the FRW background [2]. The standard explanation to the generation of
these inhomogeneities in a way consistent with observations is based on a mechanism of inflation,
which drove the evolution of the universe to a fast and large expansion in a very short period of the
early cosmological history [3].

Probably, the simplest model that can generate a satisfactory inflation is a universe with a mat-
ter content consisting of a massive scalar field, at least for a certain range of values of the mass
(which do not include the massless case). In this model, the field is just a scalar, with no internal
structure, and its potential is just the mass term, therefore quadratic in the field, simplifying the
study enormously while retaining sufficient complexity to make the model interesting. We will
consider a minimal coupling for the field, ignoring other possible but more complicated couplings.
In addition, we will discuss the case in which the spatial topology of the FRW background is flat.
This topology is the simplest to deal with from the operational viewpoint, since the field equations
do not include then contributions of the spatial curvature. But, more importantly, flat topology is
picked out as the preferred case by cosmological observations [4]. The effects of spatial curvature
can be studied, e.g., by considering spherical topology [5], case from which the flat one can be
recovered essentially by disregarding the corresponding curvature terms in the gravitational action.
On the other hand, we do not only assume flat spatial sections, but also compact ones. The com-
pactness does not affect the cosmological observations if the size of the compact universe is, let’s
say, much larger than the Hubble horizon, since physics beyond that scale should not be relevant
for cosmological phenomena. From the viewpoint of quantum field theory in a cosmological back-
ground, compactness allows us to avoid infrared problems, related to the existence of an infinite
number of perturbative modes infinitesimally close to the global, zero modes of the system.

Given its physical interest and simplicity, this model has been repeatedly studied in the litera-
ture of quantum cosmology (usually with non-flat topology [6, 7]) to discuss the kind of quantum
processes that might leave an imprint in the primordial perturbations. Nonetheless, up to recent
years the system had not been studied in the framework of Loop Quantum Cosmology (LQC) [8].
The revisited analysis is particularly important both because of the rigorous control gained with
the probabilistic interpretation of the quantum theory in LQC, which provides solid fundamen-
tals to the predictions, and because of the good properties exhibited by the quantum evolution of
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Cosmological perturbations in LQC

FRW models in the application of Loop Quantum Gravity (LQG) [9] to cosmology [10, 11, 12].
In particular, the Big Bang singularity is resolved quantum mechanically and replaced with a Big
Bounce, a process in which the contraction/expansion of the universe bounces owing to repulsive
effects of the quantum geometry. Through this bouncing mechanism, our branch of the universe
connects with another previous branch that was in contraction. Both branches keep their semiclas-
sical behavior for sufficiently well peaked quantum states of the geometry, but nonetheless depart
from the dynamics of general relativity in the regions of large matter density, close to the bounce
[12, 13].

In fact, this system and other models related to cosmological perturbations have been studied
in the context of LQC following an approach that does not face its direct quantization. Instead,
most of those analyses were based on the modified algebra of constraints obtained by assuming
certain types of loop corrections and demanding the absence of anomalies for consistency. From
this modified algebra, new field equations for the perturbations were derived and the corresponding
consequences for the CMB discussed [14]. On the other hand, other studies have started from an
extrapolation of the effective dynamics associated with LQC, extending conclusions about this ef-
fective description in homogeneous cosmologies to systems with inhomogeneities [15]. In contrast,
in order to deal with the cosmological perturbations, we will carry out a complete quantization of
the system. This is especially interesting, since it provides a way to reach predictions from basic
principles and obtain results from which one may, in particular, try and check the validity of the
assumptions employed in other kinds of approaches. For this aim, it is important that we perform
as few approximations as possible in our treatment, and that we keep those approximations under
control. Besides, those approximations ought to be deduced from general considerations, or at least
be checked eventually to confirm their self consistency in our formalism. In this sense, we note that
it is not always possible to prove the validity of some approximations, because one would need a
fully general and well posed theory from which one could derive the demonstration. Since this is
not the case, not only in LQC, but also in LQG, the best that one can frequently do is to check the
self consistency in the proposed formulation, within the introduced approximation.

With this motivation in mind, we will discuss the quantization of scalar perturbations around an
FRW cosmology with a minimally coupled massive scalar field and a three-torus spatial topology
[16]. The first approximation that we will use is to truncate the gravitational action (in Hamiltonian
form) at quadratic order in the inhomogeneous perturbations. This truncation is similar to that
performed in the canonical formulation of quantum cosmology by Halliwell and Hawking [6]. The
truncation scheme allows us to maintain backreaction effects on the background, exactly up to
the perturbative order in the action here considered. Keeping this quadratic order in the action
is essential for self consistency, as we will see. Moreover, the fact that all quadratic perturbative
terms are maintained leads to a description that is more general than other less refined truncations
discussed very recently in the literature [17, 18]. Hence, our approach would allow us to analyze
regimes in which those other truncations can be reached, and investigate their range of applicability.

The other approximation that we will employ in our quantization is the so-called hybrid ap-
proach within LQC. The hybrid approach is a hierarchy to the quantization of the geometry, in
which one assumes that the most relevant quantum effects are those affecting the background. In
this way, one adopts a polymeric quantization of the degrees of freedom of the background ge-
ometry, using loop techniques, and combines this quantum treatment with a more standard, Fock
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quantization of the perturbations. The fact that one can combine these two types of quantiza-
tion techniques is not trivial, because the different degrees of freedom are coupled (at least) by
the Hamiltonian constraint. Nevertheless, the hybrid program has been applied successfully [19]
in the study of Gowdy cosmologies (cosmologies with inhomogeneities that depend only on one
spatial direction) [20], and its use for cosmological perturbations has been developed in Refs.
[5, 16, 21, 22]. It is worth remarking that the hybrid quantization of Gowdy models does not re-
quire any perturbative truncation of the gravitational action: in that case, the treatment is exact, and
no truncation is needed, since the action is already quadratic in the field variables adopted for the
system. This provides even more robustness to the results obtained for Gowdy universes. In our
case, both the hybrid approach and the quadratic truncation of the action are necessary to handle
with the problem.

In carrying out this hybrid quantization, an important issue is the choice of a specific field
description for the inhomogeneous perturbations as well as a concrete Fock representation for the
corresponding canonical commutation relations (CCR’s). This is of the most relevance, because
in cosmological scenarios a part of the time dependence of the inhomogeneous fields can be at-
tributed to the background, therefore affecting the selection of field description and changing the
corresponding field dynamics. Furthermore, even assuming that a specific canonical pair has been
picked out for each field, one has in principle infinitely many possible Fock representations of
the corresponding CCR’s. The physical ambiguity in this choice can be viewed as the freedom
in the selection of a specific vacuum (which involves a particular concept of particle, associated
with it) [23]. There exists an infinite number of inequivalent choices, each of them leading to dif-
ferent physical predictions. This would ruin the robustness of the quantum description, since one
would have infinitely many physical outcomes at hand, while only one universe is available to com-
pare the predictions with observations. This ambiguity, typical of quantum field theory in curved
space-times, is removed in simple cases by appealing to background symmetries. For instance, in
Minkowski space-time, one demands the vacuum to be invariant under the Poincaré symmetries of
the background. In stationary space-times, where a well-defined notion of energy is available, one
can remove the infinite ambiguity in the choice of Fock representation with requirements about the
energy of the quantum field [24]. Nevertheless, generally these kinds of symmetry conditions are
not sufficient in non-stationary scenarios. In such situations, where there is still spatial symmetry
remaining in the background, but time symmetries are absent, it seems natural to keep the demands
of invariance under the persisting symmetries, as well as to replace the lost time invariance with
the requirement of a unitary implementation of the evolution in the Fock quantization. Notice that
this unitarity permits a standard probabilistic interpretation of the quantum theory. Recent results
[25, 26] prove that, indeed, the combined criteria of (i) invariance under the spatial symmetries of
the field equations, and (ii) implementability of the quantum dynamics as a unitary transformation,
select a unique class of equivalent Fock representations, and thus remove the physical ambiguity
in the quantization. Moreover, the above requirements suffice in fact to choose only one canonical
pair among all those that are related by time-dependent canonical transformations that involve a
scaling of the field configuration (absorbed by assigning that part of the time dependence to the
background) [26, 27]. In this way, one arrives at a well justified separation between the degrees
of freedom of the inhomogeneous fields and those of the background. Let us comment that other
recent works on cosmological perturbations in LQC do not include this specific scaling that makes

4



P
o
S
(
I
C
M
P
 
2
0
1
3
)
0
0
4

Cosmological perturbations in LQC

the dynamics unitarily implementable [17, 18]. Obviously, this affects the quantum description,
and in particular the effective approaches therein derived.

Moreover, one can even consider non-local canonical transformations, respecting the decou-
pling of the field modes of the inhomogeneous perturbations [28]. This kind of non-local trans-
formations relate, for instance, the perturbative degrees of freedom in gauge-fixed formulations
with the gauge invariants that describe those degrees [21]. Again, the uniqueness of the Fock
quantization, up to unitary equivalence, is guaranteed by our criteria of imposing spatial symmetry
invariance and unitary dynamics.

The rest of this work is organized as follows. We first present the classical description of the
model, using Ashtekar-Barbero variables for the FRW geometry [8] and annihilation and creation-
like variables for the perturbations. We then fix gauge in the system, eliminating all but one of
the non-physical (canonical pairs of) degrees of freedom. The reduced model has only one global,
Hamiltonian constraint. We also comment on the robustness of our study under changes of gauge,
and on the use of gauge invariants for the perturbations. Next, we proceed to quantize the re-
duced model employing a hybrid approach. Our final step consists in obtaining solutions to the
constraint, showing that one regains a standard quantum field theory for the perturbations under
certain approximations. Finally, we summarize our results and conclude.

2. The classical model

For the classical description of our system, we choose variables that are especially suitable
to pass to the hybrid quantization of the model in a quite straightforward way. Thus, we use
Ashtekar-Barbero variables to describe the geometry of the FRW background. The matter content
of this background is given by the zero mode, in a Fourier expansion, of the massive scalar field.
Finally, for the inhomogeneities, we employ also a decomposition in Fourier modes on the spatial
sections. These modes are eigenfunctions of the corresponding Laplace-Beltrami (LB) operator of
the flat metric on the three-torus.

The Ashtekar-Barbero variables are a su(2) connection Ai
a and a densitized triad Ea

i [9]. Latin
letters from the beginning and the middle of the alphabet denote, respectively, SU(2) and spatial
indices, taking values from 1 to 3. We choose angular spatial coordinates ~θ on the three-torus, each
of them with period equal to 2π . The densitized triad contains the information about the spatial
metric, whereas the connection is classically equivalent to the sum of the spin connection compat-
ible with the triad plus the extrinsic curvature expressed in triadic form. In this sum, actually, the
extrinsic curvature can be multiplied by any positive constant γ . This constant is usually called the
Immirzi parameter [29]. Taking into account the homogeneity and isotropy of the model, it is not
difficult to realize that, with an appropriate choice of SU(2) gauge, the Ashtekar-Barbero variables
can be written in the form

Ai
a = c

0ei
a

2π
, Ea

i = p
∣∣ 0e
∣∣ 0ea

i
(2π)2 , (2.1)

where 0ei
a is a fiducial triad of reference, e.g. the standard diagonal flat triad 0ei

a = δ i
a,
∣∣ 0e
∣∣ is

its determinant, c and p are two geometry variables (evolving in time) with canonical Poisson
brackets, {c, p} = 8πGγ/3, and G is Newton constant. We notice that, as a consequence, the
degrees of freedom contained in the Ashtekar-Barbero variables reduce just to the canonical pair
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c and p. The relation of this pair with the scale factor a of the FRW model (or rather with its
logarithm α) and with the corresponding momentum is

a2 = e2α =
|p|

(2πσ)2 , πα =− pc
γ8π3σ2 . (2.2)

Here, we have introduced the constant σ2 = G/(6π2). On the other hand, to describe the homo-
geneous part of the massive scalar field, we will use a canonical pair, φ and πφ , which denote its
configuration and conjugate momentum. Their Poisson bracket is equal to 1. To simplify our for-
mulas, it will also prove convenient to introduce a scaled canonical pair, differing from the former
by a constant factor:

ϕ = (2π)3/2
σφ , πϕ =

πφ

(2π)3/2σ
. (2.3)

If we now define the volume variable V = |p|3/2, proportional to the volume of the spatial
sections of the FRW model with three-torus topology, a straightforward calculation shows that the
only constraint on the system in the completely homogeneous situation (without any inhomoge-
neous perturbation), namely the homogeneous Hamiltonian constraint, would be

C0 =−
6
γ2

√
|p|c2 +

8πG
V

(π2
φ +m2V 2

φ
2). (2.4)

The constant m is the mass of the scalar field.
Let us now consider the inhomogeneities. Since the massive scalar field Φ (which includes

perturbations, in contrast to the homogenous part φ ) satisfies a Klein-Gordon equation, where all
the spatial dependence appears via the action of the LB differential operator, it is natural to use
a basis of eigenfunctions of this operator to expand the inhomogeneities. These eigenfunctions
form just a basis of Fourier modes. We choose them real, in order to incorporate the reality of the
scalar field in a simple way in the corresponding Fourier expansion. Since we are only interested in
describing the inhomogeneous contributions, we exclude the zero mode from this expansion, which
is already taken into account in the canonical pair φ and πφ . The orthonormalized Fourier basis is
composed of the cosine and sine functions (denoted with a subindex + and −, respectively):

Q~n,+ =
1

2π3/2 cos~n ·~θ , Q~n,− =
1

2π3/2 sin~n ·~θ . (2.5)

The notation~n stands for any non-vanishing tuple of integers in which the first non-zero component
is positive. This positivity restriction is introduced in order not to consider twice the same mode,
since the sines and cosines change at most in a sign under a flip of sign in the tuple. The above
functions are eigenmodes of the LB operator of the standard flat metric on the three-torus, with
eigenvalue −ω2

n =−~n ·~n. Note that there exists degeneracy in each eigenspace, not only owing to
flips of signs and permutations in the components of the tuples, but also accidental degeneracy in
some cases.

In our discussion, we will only consider scalar perturbations in the space-time metric. This is
totally consistent inasmuch as scalar perturbations are decoupled from vector and tensor perturba-
tions of the metric at the adopted quadratic order of truncation in the action [6]. We describe the
metric in a 3+1 decomposition [30] in terms of the spatial metric hi j, induced on the sections of
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constant time with three-torus topology (with fiducial flat metric given by 0hi j), the lapse function,
and the shift vector. Then, the combined form of the homogenous contributions and the inhomo-
geneous scalar perturbations to the metric and the scalar field can be expressed as

hi j = (σeα(t))2
[

0hi j +2ε(2π)3/2
∑

{
a~n,±(t)Q~n,±

0hi j +b~n,±(t)
(

3
ω2

n
(Q~n;±);i j +Q~n,±

0hi j

)}]
,

N = σN0(t)
[
1+ ε(2π)3/2

∑g~n,±(t)Q~n,±

]
,

Ni = ε(2π)3/2
σ

2eα(t)
∑

k~n,±(t)
ω2

n
(Q~n,±);i,

Φ =
1
σ

[
ϕ(t)

(2π)3/2 + ε ∑ f~n,±(t)Q~n,±

]
. (2.6)

The covariant derivative with respect to 0hi j is here denoted with a semicolon. The homogeneous
part of the lapse function is σN0(t). The parameter ε is a perturbative parameter, introduced for
convenience in order to track the perturbative order of the expressions more easily. The time
dependent coefficients a~n,±, b~n,±, g~n,±, k~n,±, and f~n,± characterize the perturbations. The variables
a~n,± and b~n,± describe, respectively, the trace and traceless contributions of the perturbations to
the spatial metric. The coefficients g~n,± and k~n,± provide the perturbations of the lapse and the
shift, and therefore are expected not to correspond to physical degrees of freedom. Finally, the
inhomogeneities of the scalar field are given by the variables f~n,±.

If one substitutes these expressions in the gravitational action and truncates it at quadratic order
in perturbations, after a lengthy but trivial calculation one arrives at the following total Hamiltonian
for the perturbed system, formed by a linear combination of constraints:

H =
N0σ

16πG
C0 + ε

2
∑

(
N0H~n,±

2 +N0g~n,±H~n,±
1 + k~n,±H̃~n,±

1

)
. (2.7)

We thus confirm that g~n,± and k~n,± appear as Lagrange multipliers, accompanying the linear per-
turbative (scalar and diffeomorphisms) constraints H~n,±

1 and H̃~n,±
1 , respectively. Besides, we see

that the zero mode of the scalar constraint, for which N0 is the Lagrange multiplier, acquires now a
quadratic contribution in the perturbations, provided by ∑H~n,±

2 . The exact form of the perturbative
constraints can be found in Ref. [16].

3. Gauge fixing

We can now proceed to eliminate non-physical degrees of freedom by fixing the gauge cor-
responding to the linear perturbative constraints. We will adopt the longitudinal gauge, in which
the three-metric is conformally flat and the shift vector vanishes. This gauge fixing is employed
frequently in the literature. Since k~n,± are just Lagrange multipliers, we cannot use the requirement
that they vanish directly as gauge-fixing conditions. To make the shift equal to zero we must im-
pose a suitably chosen restriction on the dynamical variables of the system. As in Refs. [5, 16], the
appropriate conditions for the longitudinal gauge are

πa~n,±−παa~n,±−3πϕ f~n,± = 0, b~n,± = 0. (3.1)
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When these equations are imposed, the constraint H̃~n,±
1 = 0 implies that πb~n,± = 0, while H~n,±

1 = 0
leads to

a~n,± = 3
πϕπ f~n,±+

(
e6αm2σ2ϕ−3παπϕ

)
f~n,±

9π2
ϕ +ω2

n e4α
. (3.2)

To arrive at this relation, third-order terms in the perturbations have been neglected. On the other
hand, the dynamical consistency of the conditions (3.1) requires in fact that the shift vector vanish,
as we wanted.

In the reduction of the system, after imposing the gauge-fixing conditions, the non-zero value
of the terms of the form ȧ~n,±πa~n,± in the Lagrangian (where the dot denotes the time derivative)
leads to a contribution to the action when one removes the canonical pairs (a~n,±,πa~n,±) as physical
degrees of freedom. One can see that, as a consequence, the Poisson brackets of the remaining
variables change [16]. A new set of canonical coordinates after reduction, at the perturbative order
of truncation in the action, is

ϕ̄ = ϕ +3ε2
∑a~n,± f~n,±, πϕ̄ = πϕ ,

ᾱ = α + ε2

2 ∑

(
a2
~n,±+ f 2

~n,±

)
, πᾱ = πα − ε

2
∑ f~n,±

(
π f~n,±−3πϕa~n,±−πα f~n,±

)
,

f̄~n,± = eα f~n,±, π f̄~n,± = e−α(π f~n,±−3πϕa~n,±−πα f~n,±). (3.3)

In particular, we see that the genuine background variables get corrections that are quadratic in the
perturbations. Notice also that we have already scaled the matter field variables f~n,± by the FRW
scale factor, to adopt the field description that is selected by the requirement that, in the context
of quantum field theory in a curved space-time, the dynamics of the reduced system can admit a
unitary implementation under a Fock quantization (invariant under the spatial isometries).

The dynamics of the reduced system is such that the modes of the scaled matter field satisfy
an equation of Klein-Gordon type with time-dependent mass:

¨̄f~n,±+ rn
˙̄f~n,±+(ω2

n + s+ sn) f̄~n,± = 0, (3.4)

with a canonical momentum of the form

π f̄~n,± = (1+ pn)
˙̄f~n,±+qn f̄~n,±, (3.5)

where we have used the notation

s = m2
σ

2e2ᾱ − e−4ᾱ

2
(
π

2
ᾱ +21π

2
ϕ̄ +3e6ᾱm2

σ
2
ϕ̄

2) , (3.6)

and rn, sn, pn, and qn denote functions (of the corrected background variables) which are of order
ω−2

n in the LB eigenvalue [16]. This asymptotic order is sufficiently subdominant as to allow
that the results of uniqueness about the Fock representation of our (scaled) matter field and its
momentum continue to apply. Recall that this uniqueness (modulo unitary transformations) is
guaranteed by the criteria of invariance under the isometries of the three-torus and the unitary
implementability of the evolution [21].

Actually, the dynamical equation of the matter perturbations can be put in the exact form of
a Klein-Gordon field equation with time-dependent mass, without mode-dependent modifications,
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by means of a canonical transformation that varies in time but which, nonetheless, is mode de-
pendent. Hence this transformation is non-local from the viewpoint of the original scalar field.
Even so, remarkably, it is possible to see that this canonical transformation turns out to be unitarily
implementable in the Fock quantization selected by our criteria [28].

Only one constraint remains in the reduced model obtained after gauge fixing, which is the zero
mode of the Hamiltonian constraint, again given by the Hamiltonian constraint of the background
part of the system together with contributions of the perturbations:

H =
N0σ

16πG
C0 + ε

2N0 ∑H~n,±
2 , (3.7)

where the perturbative terms are quadratic in the inhomogeneous modes,

H~n,±
2 2eᾱ = Ē f̄ f̄ f̄ 2

~n,±+ Ē f̄ π f̄~n,±π f̄~n,±+ Ēπππ
2
f̄~n,±

. (3.8)

The explicit form of the coefficients in this quadratic expression is

Ēn
f̄ f̄ = ω

2
n + e2ᾱm2

σ
2− e−4ᾱ

2
(
π

2
ᾱ +15π

2
ϕ̄ +3e6ᾱm2

σ
2
ϕ̄

2)− 3e−8ᾱ

ω2
n

(
e6ᾱm2

σ
2
ϕ̄−2πᾱπϕ̄

)2
,

Ēn
f̄ π

= −3e−6ᾱ

ω2
n

πϕ̄

(
e6ᾱm2

σ
2
ϕ̄−2πᾱπϕ̄

)
,

Ēn
ππ = 1− 3e−4ᾱ

ω2
n

π
2
ϕ̄ . (3.9)

Finally, we have checked that the results obtained with other possible gauge choices are sim-
ilar, a fact that shows the robustness of our conclusions beyond the selection of a specific gauge.
For instance, we have repeated the reduction of the system in a gauge with flat spatial sections
at all times. We have proven that the Fock quantization selected in that case by our criteria of
spatial symmetry invariance and unitary evolution of the matter inhomogeneities is unitarily equiv-
alent to the quantization constructed above in the longitudinal gauge. Moreover, we have related
our mode variables for the matter inhomogeneities in our reduced model with the modes of the
Mukhanov-Sasaki variable [31] and its momentum, which are gauge invariant quantities [32]. We
have demonstrated that the canonical transformation that relates these two sets of variables is in
fact unitarily implementable in our Fock quantization, therefore providing further support to our
description.

4. Hybrid quantization

We can now carry out the hybrid quantization of our reduced system, using the so-called poly-
meric quantization of LQC [8] for the homogeneous sector of the model, and a Fock quantization
for the infinite number of degrees of freedom corresponding to the Fourier modes of the inhomo-
geneities of the scalar field.

For our homogeneous sector, we will employ a specific prescription for the loop quantiza-
tion which is known as the MMO proposal [33]. This particular prescription for the quantization
has certain advantages while keeping essentially the same physics that appears in other prescrip-
tions and which is behind the quantum resolution of cosmological singularities [10, 11, 12]. For
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instance, in the MMO proposal, the quantum evolution can be defined straightforwardly without
the need to recur to ideal clocks (e.g., given by the homogenous component of a massless field).
Besides, the Wheeler-DeWitt limit of the polymeric quantization of the FRW space-times is unam-
biguous with this prescription (in each superselection sector) [33]. Perhaps more importantly for
practical purposes is the fact that the MMO proposal is optimal for numerical simulations, reducing
considerably the computation time and the complexity of the codes [33].

Our homogeneous variables are defined in the first two lines of Eq. (3.3). In the following,
we remove the over-bars in those variables in order to simplify our notation. We start by adopting
a basis of volume eigenstates {|v〉;v ∈ R} of the operator V̂ = |p̂|3/2 [the relation of p with the
variables used for the homogeneous FRW geometry is that given in Eq. (2.2)]. The polymeric
quantization is characterized by a discrete inner product in this volume basis [8]:

∀ v1,v2 ∈ R, 〈v1|v2〉= δ
v1
v2
. (4.1)

In this representation, clearly, the volume acts by multiplication, and hence the triad as well, since
it is just a function of the former. As for the connection, one considers the holonomies obtained
by integrating it along edges. This line integrals characterize the connection faithfully, and are
independent of SU(2) gauge transformations when the edges are made to close. In fact, in the
homogenous situation that we are considering, it suffices to consider holonomies along (fiducial)
straight edges: these holonomies contain all the relevant information. They take the expression

h0ei
(µ̄) = cos

(
µ̄c
2

)
1+2sin

(
µ̄c
2

)
τi, (4.2)

where τi form a set of SU(2) generators and, apart from a factor of −i/2, can be identified with the
Pauli matrices. The quantity µ̄ determines the fiducial length of the edge on which the holonomy
has been calculated, and can take any real value. Therefore, we see that the elements of the relevant
holonomies are linear combinations of the functions Nµ̄ = eiµ̄c/2.

The value of µ̄ is frequently chosen in LQC by demanding that the physical area enclosed
by a square of edge with that fiducial length be equal to the area gap ∆, i.e., the minimum non-
zero eigenvalue of the quantum area in LQG [34]. With this choice, usually called the improved
dynamics prescription [12], the actions of the above holonomy elements and of the triad variable
in the volume basis (with Planck constant denoted by h̄) are given explicitly by [8]

N̂µ̄ |v〉= |v+1〉, p̂|v〉= sign(v)
(

2πγGh̄
√

∆ |v|
)2/3
|v〉. (4.3)

The kinematic Hilbert space of the polymeric representation for the homogeneous sector of
the model, once we take into account not only the geometry, but also the zero mode of the massive
scalar field, is the product HFRW−LQC

kin ⊗Hmatt
kin , where the first factor is the Hilbert space obtained for

the FRW model in LQC by completing the span of our volume basis with the product (4.1), and the
second factor is the Hilbert space, standard in quantum mechanics, of integrable square functions in
the configuration variable of the homogeneous scalar field. In this representation space, the inverse
volume is regularized as usual in LQC [8]:[̂

1
V

]
=

̂[
1√
|p|

]3

,

̂[
1√
|p|

]
=

3
4πγGh̄

√
∆

̂sign(p)
√
|p̂|
(

N̂−µ̄

√
|p̂|N̂µ̄ − N̂µ̄

√
|p̂|N̂−µ̄

)
.

(4.4)
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This operator has not only a well-defined action on the state of zero volume, a property behind the
resolution of singularity problems in the loop quantum formulation, but, moreover, it turns out to
annihilate that state. As a result, one can prove that the zero-volume state completely decouples
from the rest of volume eigenstates after the imposition of the homogenous Hamiltonian constraint
in the quantum theory [33]. This allows one to change the densitization of that constraint, simpli-
fying the analysis. For the homogeneous sector, this change is provided by the correspondence

Ĉ0 =

[̂
1
V

]1/2

Ĉ0

[̂
1
V

]1/2

, (4.5)

where
Ĉ0 =−

6
γ2 Ω̂

2
0 +8πG

(
π̂

2
φ +m2

φ̂
2V̂ 2) (4.6)

and we have represented the gravitational part, according to the MMO proposal, by the operator

Ω̂0 =
1

4i
√

∆
V̂ 1/2

[
̂sign(p)

(
N̂2µ̄ − N̂−2µ̄

)
+
(
N̂2µ̄ − N̂−2µ̄

) ̂sign(p)
]

V̂ 1/2. (4.7)

Notice that we have used a symmetric factor ordering, algebraic in powers of V , and taken espe-
cial care of the sign of p, which determines the orientation of the triad in the Ashtekar-Barbero
formalism.

The action of this geometry operator has the generic form

Ω̂
2
0|v〉= f+(v)|v+4〉+ f0(v)|v〉+ f−(v)|v−4〉. (4.8)

In particular, this action superselects the Hilbert space HFRW−LQC
kin , which is non-separable, into

sectors that are separable independently. Each of these sectors contains volume states with eigen-
values that differ by a multiple of 4 units. Moreover, owing to the symmetrization in the sign of
p made in Eq. (4.7), the real functions f+(v) and f−(v) vanish, respectively, in the whole inter-
val [-4,0] and [0,4]. A a result, the action of the considered operator does not connect positive
and negative eigenvalues of the volume. In total, the operator preserves the superselection sectors
L
(4)
±ρ := {±(ρ +4n), n ∈ N}, which are semilattices of points spaced by four units. Each of them

is totally characterized by the point which is closer to the origin, which can be described by its sign
and its absolute value ρ (which may run in (0,4]).

The geometry operator Ω̂2
0 that appears in the homogeneous constraint can be shown to be self-

adjoint in each of these superselection sectors. Its eigenfunctions can be chosen to be real (since
the functions f0, f+, and f− turn out to be real) and are completely determined by their value at the
minimum volume ±ρ , which can be used as initial condition to integrate the eigenvalue difference
equation associated with Eq. (4.8). Similarly, the quantum solutions to the complete homogeneous
constraint can be constructed starting from their initial values on the section of minimum volume in
the analyzed superselection sector. Consequently, one can identify the space of physical states with
the space of those initial conditions endowed with a suitable Hilbert structure, so that the important
observables of the homogenous sector become self-adjoint operators; for instance, one can choose
the Hilbert space L2(R,dφ). Alternatively, if one identifies the zero mode of the scalar field as an
internal clock, one can integrate the quantum constraint in φ providing initial conditions for fixed
value of this field configuration.

11



P
o
S
(
I
C
M
P
 
2
0
1
3
)
0
0
4

Cosmological perturbations in LQC

Let us discuss now the Fock quantization of the inhomogeneities of our system. We quantize
the scaled inhomogeneous modes using annihilation and creation-like variables defined in terms
of our canonical variables just as it would be natural to do in the case of zero mass. Namely,
the chosen annihilation and creation-like variables are those whose frequency coincides with the
eigenvalue of the LB operator [16]. In this way, it is straightforward to construct a Fock space F

with associated basis of n-particle states of the form{
|N〉= |N(1,0,0),+,N(1,0,0),−, . . .〉; N~n,± ∈ N, ∑N~n,± < ∞

}
. (4.9)

That is, for each element of this basis, the occupation number in each particle mode is a non-
negative integer, and the sum of all those integers is finite.

The hybrid quantization is attained by adopting the product space HFRW−LQC
kin ⊗Hmatt

kin ⊗F as
representation space. The remaining, global Hamiltonian constraint has a non-trivial action on this
space. To define it, we need to select a quantum representation of the term that contains quadratic
contributions of the perturbations, namely ∑H~n,±

2 . We do this by adopting the quantization pro-
posals already explained for the homogeneous sector, using a symmetric factor ordering, and em-
ploying the Fock representation that has been selected, in the context of quantum field theory in
curved space-times, by our criteria of spatial symmetry invariance and unitary dynamics [25]. In
more detail: (1) we symmetrize products of the type φ̂ π̂φ ; (2) we take a symmetric geometric factor
ordering V kA→ V̂ k/2ÂV̂ k/2 for all products involving powers of V ; (3) we adopt the LQC repre-
sentation (cp)2m→

[
Ω̂2

0
]m

; and (4) in order to preserve the FRW superselection sectors, we adopt

the prescription (cp)2m+1→
[
Ω̂2

0
]m/2

Λ̂0
[
Ω̂2

0
]m/2

, where

Λ̂0 =−
i

8
√

∆
V̂ 1/2

[
̂sign(p)

(
N̂4µ̄ − N̂−4µ̄

)
+
(
N̂4µ̄ − N̂−4µ̄

) ̂sign(p)
]

V̂ 1/2. (4.10)

This last prescription for the representation of cp, actually, is similar to that followed to represent
the Hubble parameter in LQC, since otherwise its action would not leave invariant the superselec-
tion sectors of the FRW cosmology. The exact form of the constraint operator constructed in this
manner can be consulted in Ref. [16].

5. Physical states

Once we have quantized our model of an FRW space-time with a massive scalar field and
scalar perturbations, and after we have found a representation of the only constraint of the system
in this quantum theory, we will investigate the solutions to that constraint, which provide the wave
functions that describe the possible physical states.

First, let us accept that the matter field may serve as a clock. We can then consider positive
(negative) frequency states with respect to that time, in particular in the restriction to the homo-
geneous sector of the model. For the complete system, we can concentrate our attention on states
which satisfy an ansätz similar to the Born-Oppenheimer approximation of molecular physics [35].
This ansätz consists in a separation of the dependence of the wave function Ψ in homogeneous and
inhomogeneous variables, using the homogeneous field configuration φ as an internal time:

Ψ = χ0(v,φ)ψ(φ ,N[ f̄~n,±]). (5.1)

12



P
o
S
(
I
C
M
P
 
2
0
1
3
)
0
0
4

Cosmological perturbations in LQC

We then assume that the variation of the inhomogeneous part in this internal time is negligible
compared to that of the FRW part. Here, N[ f̄~n,±] denotes the inhomogeneous variables of our
Fock representation. Besides, χ0(v,φ) is taken as a (positive frequency) quantum solution to the
homogeneous constraint, sufficiently peaked around a classical FRW solution for large values of
the volume V as to guarantee the validity of the effective quantum dynamics of homogeneous LQC
[15]. In other words, we can use effective LQC to describe the evolution of the peak. After a bit
of calculus, one can show that the introduced ansätz and approximation lead to a sort of effective
quantum field theory for the inhomogeneities [16]:

− ih̄∂φ ψ̃ =
ε2

2
〈(0)Θ̂2 +

(1)Θ̂2Ĥ0〉χ0

〈Ĥ0〉χ0

ψ̃, (5.2)

where 〈 〉χ0 denotes the expectation value with respect to the FRW geometry [taking the inner prod-
uct (4.1) of LQC], the operator Ĥ2

0 coincides with the square of the homogeneous field momentum
modulo the homogeneous Hamiltonian constraint,

Ĥ2
0 = π̂

2
φ −

Ĉ0

8πG
, (5.3)

we have scaled the wave function of the inhomogeneities:

ψ̃ =
[
〈Ĥ0〉χ0

]1/2
ψ, (5.4)

and, finally, (0)Θ̂2 and (1)Θ̂2 are defined in terms of the quadratic contributions of the perturbations
to the constraint, Ĥ~n,±

2 , as follows. First, we change the densitization of this term exactly as we did
with the homogeneous term of the constraint:

Ĥ~n,±
2 =

σ

16πG

[̂
1
V

]1/2

Ĉ~n,±
2

[̂
1
V

]1/2

. (5.5)

Then, we split Ĉ~n,±
2 in contributions with odd and with even powers of π̂φ . Using relation (5.3) to

replace all integer powers of the square of the homogeneous field momentum by Ĥ2
0 at the studied

perturbative level, and representing the remaining momentum π̂φ as −ih̄ times the derivative with
respect to φ , we define our operators Θ̂2 by the equation

∑ Ĉ~n,±
2 =−8πG

(
(0)

Θ̂2− ih̄(1)Θ̂2∂φ

)
. (5.6)

Our formula (5.2) can be understood as a Schrödinger equation with physical Hamiltonian
given on the right hand side. This Hamiltonian can be interpreted as the Mukhanov-Sasaki Hamil-
tonian for the inhomogeneities, expressed in terms of our variables, and evaluated at the homoge-
neous background determined by the peak of the FRW quantum state χ0, whose evolution is ruled
by effective LQC. Therefore, the corresponding background can be regarded as an FRW space-time
dressed with (polymeric) quantum modifications.

If one does not want that the analysis of the physical states rests on the choice of any specific
internal time, one can always adopt an alternate scheme, based on a perturbative expansion of the
solutions1 to the quantum constraint of the form

(Ψ|= (Ψ|(0)+ ε
2 (Ψ|(2) . . . . (5.7)

1We represent these solutions as generalized states; hence our notation as “bra” states.
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At dominant order, the state is simply a solution of the FRW constraint, (Ψ|(0) Ĉ0 = 0. We
discussed the form of the operator Ĉ0 and the construction of solutions (starting from initial con-
ditions at a minimum volume) in the previous section. If we go to the next perturbative order, we
find that the evolution of the perturbations is dictated by the equation:

(Ψ|(2) Ĉ0 =−(Ψ|(0)
(
∑ Ĉ~n,±

2

)†
, (5.8)

where the dagger denotes the adjoint action. This equation can be solved exactly as the homoge-
neous FRW constraint, taking initial conditions on the section of minimum volume in the super-
selection sector and integrating in V , with a source given by the right hand side (and, therefore, by
the quantum state at zeroth order). We thus see that the solutions are characterized again by their
initial data at minimum volume. Consequently, we can identify quantum solutions with a space
of initial conditions supplied with a Hilbert structure that ensures that the relevant observables be-
come self-adjoint operators. In this way, e.g., we can choose the Hilbert space of physical states as
Hmatt

kin ⊗F [16]. This concludes the quantization of our system.

6. Conclusion

We have studied a perturbed FRW universe with a massive scalar field. We have considered
the case of compact flat spatial sections with the topology of a three-torus, and focused our dis-
cussion on scalar perturbations of the field and the space-time metric. In order to carry out our
analysis of the quantization of this cosmological system within the framework of LQC, we have
introduced two approximations. First, we have truncated the gravitational action at second order in
the perturbations. Second, we have adopted a hybrid quantization scheme, which combines loop
and Fock techniques, assuming that the most important quantum effects of the geometry are those
that affect the FRW background. We have fixed the gauge of the linear perturbative constraints and
reduced the system. We have shown that this system is endowed with a symplectic structure and
a (global) Hamiltonian constraint at the considered truncation order, in contrast with recent claims
to the contrary in the literature [17, 18] (for the sake of clarity, let us also remark that the system
is already symplectic before reduction). This global Hamiltonian constraint includes backreaction
effects in the sense that it contains both the contribution of the homogeneous part of the system and
a term which is quadratic in the perturbations.

It is worth emphasizing that, for our formulation, no internal time is necessary. Under some
controlled approximations, if a matter clock is available, one may reach an effective quantum field
theory for the perturbations in an FRW background dressed with quantum corrections. We have
discussed how this is possible if one adopts a Born-Oppenheimer approximation, splitting the de-
pendence of the quantum states in a part for the FRW geometry and another part for the perturba-
tions, and assuming that the latter part, in comparison to the former, has a negligible momentum
conjugate to the zero mode of the scalar field, which is used as internal time. In the reached quan-
tum field theory, the dynamics of the perturbations is unitary, thanks to the Fock representation and
matter field scaling that we have chosen.

Finally, to make clear that the quantization that we have put forward does not rest on any spe-
cific choice of internal time, we have constructed physical states (which satisfy the global Hamilto-
nian constraint) using a perturbative scheme. We have shown that, in this construction, the physical
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states can be characterized by their initial data at the minimum volume of the FRW geometry (in the
superselection sector where this geometry is quantized). This allows us to identify physical states
with those data, and complete the quantization by endowing the space of such data with a Hilbert
structure, determined, e.g., by requirements of self-adjointness on a complete set of observables.

The availability of a consistent quantization and of a space of physical states, as well as of
approximations like the Born-Oppenheimer one, which lead to a quantum field theory for the per-
turbations in a background which is dressed with corrections from loop quantum geometry, places
us in an adequate position to start analyzing effects of the quantization of gravity in the primordial
fluctuations. The modifications to the Mukhanov-Sasaki equation that result from this quantum
formalism may have left imprints in the cosmic radiation. The investigation of such imprints and
the feasibility of their observation are issues that we are presently considering.
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