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We consider three spin systems in the parallel magneticsfeatd present some of possible exact
solutions. In addition, we discuss an analogue of the Ratilpm for three-spin system. In order
to do this, we reduce the problem of three coupled spins, lewed-system, to a problem of a
3-level system in an effective field. We explicitly constrtite evolution operator of the system in
two special cases: when the fields and interaction are the saail the spins but with a arbitrary
time-dependence of the fields, and when the spins are sebjexa circular magnetic field (the
Rabi problem). Some applications of these results are skel
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Two and three coupled spins D.M. Gitman

1. Introduction

Lattice models of interacting spins have applications in many physical probéegasin con-
densed matter and quantum computation and information. Models, in which thactida is
restricted to the neighbors (e.g., the Ising model), attract a lot of attentionodieir relative
simplicity and, at the same time, due to their capability to describe a lot of importgsicphphe-
nomena. For example, the two-dimensional square-lattice Ising model idauskedcribe phase
transitions and so on. The model of a one-dimensional chain of spins, witih élements, and
each spin interacting only with its nearest neighbors, can be used tab#ea@ystem of coupled
guantum dots. Recently this problem has attracted attention due to the possfislitghoa sys-
tem to be used in the implementation of quantum computat{dns [1]. The system obtypded
quantum dots (two-qubit system) can be used to implement a universauqugate [B], i.e., any
guantum algorithm can be performed using this system. The problem ofdbugéed spins has
a direct application in the implementation of quantum error correction prggessherefore, the
study of three coupled quantum dots, in different configurations (liaedrcircular), besides of its
theoretical interest, has a lot of practical application. It turns out thairmgasuch system in an
external electromagnetic field, one can control both interaction functimhgransitions between
possible quantum states of the system. The simplest case when magnetigfiiketst@ each spin
of the system are parallel is already enough to implement any quantun{Jpafédobtaining of
a group of universal quantum gates demands the implementation of opes&taro interacting
spins. Besides, in order to this system be capable to accomplish a uho@esation, it is neces-
sary and sufficient that the evolution of this system be capable to entangiéial product state
[A]. Once this entanglement characteristic is present in the evolution wfsgdescribed by the
Hamiltonian [1.]L), the study of the exact solutions of this equation represeittgportant problem
in the analysis of the universal quantum gates and, especially, in the raigpwf quantum dots
(.

In this work, we consider two and three-qubit spin systems in the paralletetiadields and
present some of their exact solutions. In addition, we discuss an aeabdgiue Rabi problem for
three-spin system.

1.1 General

A one-dimensional chain af interacting spins, immerses in a magnetic fiBléand coupled
with neighborhoods by a Heisenberg interaction, can be described biathdtonian

n ooqn-l . 1
H=3Biz'+3 ZJi(i+l)rl<l+l) + 5l
i= i=
k= 12k D g gg1?k =55 (1.1)

wherel is the 2x 2 identity,|“" the tensor product af matricesl, o = (01, 02, 03) are the Pauli
matrices B; = Bi(t) the intensity of the magnetic field in theh spin, and};; are interaction func-
tions between theand j neighborhoodd]5]. The case whém, # 0 represents the identification of
the extremes (circular chain) adgd, = O the linear chain. Some important commutation relations
are

[Zim, Zﬂ = Zidmsijkzﬂ“, [Zim, ZT] M 2&1' . (1.2)
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Although the matrice§™" do not commute with nether™ and=", it is possible to see that
rmsm4+5"=0. (1.3)

As a consequence, arfy® and, consequently, the interaction terms in the Hamiltonfar (1.1),
commute with the rotatios?,, in any directionf,

[rik,%n} —0,A%2=1,
T (0) :exp(—fﬁif) = ﬁexp(—fﬁ-f) . (1.4)

In the case oparallel fields with arbitrary time-dependence, the Hamiltonidrpreserves,
not only the total angular momentudd, but also the projection of the angular momentum in the
direction of the fields. Due to the rotational invarianfce](1.4), we can apgitagion and bring to
the z direction. So, without loose of generality, we can chodse (0,0,1) and j; as a conserved
quantity

. 1 Lo 1g
[%H] = [izH] =0, 3= 33", J= ZJi, 2= 2223‘ (1.5)
i= i=

So, using as a bases eigenvectorg,qarranged in a descending order of their eigenvalues), the
HamiltonianH takes a block diagonal form, composedrby 1 blocks with thek-th block describ-

ing a system ofn! / (n—k+1)! (k—1)!) levels,k=1,...,n+ 1. This procedure permits to reduce
the problem oh coupled spins (the corresponding systemigeXels) to a set ofi+ 1 uncoupled
systems where the most complex elementris/d(n/2)!)?-level system.

The case wittBj = 0, all Jjj = J andJ., # O (closed chain) can be exactly solved, and the
general case can be treated using approximation or numerical methodstmiprof Bethe ansatz
[A]. As was already mention, we are going to study exactly solutions fer2 andn = 3 and
parallel time dependent fields

1.2 Two coupled spins

In the casen = 2 the Hamiltonian[(1]1) reads

1
H=B33+ B33+ élerlz,
l-owl, 2=I®o, MN?2=31.52.

The projection of the angular momentumcan assume the valuesOl—1. So the problem
can be reduced to a 2! 2-level system. It can be viewed explicitly by writing the eigenvectors of

Jz

liz=1)=100), [j.=-1)=[11) ,
“Z:O>:{‘10>7’01>} ) “vk>:||>®|k>a

0) - (3) 1= (2) . 16)
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From (1.5) we can see that, in this case, we can arrangg-these in order that it coincide with
the canonical base, and, consequently, the Hamiltadignalready in the block diagonal form

hj—1 O 0 3
z B_.—3 J
H={ 0 ho O ’hiz—°‘< 2 J>’

J B -3
0 0 hj,—1 2
J
j,=11= > +B,, B =B1+B;. (1.7)

The special case of parallel fields was treated in Rgf. [2], and in dasiecalar symmetric
fields, i.e.,
B1 =B, = (Bcoswt, Bsinwt,Bp) , B,Bp, w = const,

in Ref. []. In fact, the latter case represents a generalization of thiggRatilem for two coupled
spins. Here there appear two different resonance frequencies.alidve results have a special
interest in the description of two coupled quantum ddts [2], in particulargithtboretical modeling
of universal quantum gatef§ [8, 1], which are fundamental elements gotisruction of quantum
computers.

2. Three coupled spins

Although all the quantum algorithms can be implemented using only systems witdne a
two spins, the study of three spins system is a fundamental element in the imp&oreaf error
correction algorithms[J3]. The Hamiltonian for three spins coupled in a triangwnfiguration
and subjected to a magnetic field in theirection can be written as:

Co1
H =B+ (J2M 12+ Jpal 22 4 315l 3)
Sl—owlel, P=Ilvoxl, =I1elgo, M=3"51.

We choose the state space for such a system as the direct-producb$ize state spaces of
individual spins, i.e., we consider the canonical b&e (i = 1,2,3, ...,8) composed by the vectors
[©1) = [000), |©)=001), |©3)=[010), |©4)=][011),
@s) = [100), |©¢) =|101), |©7) =110, |Og)=][111), (2.1)

where the above notation indicategk) = |i) ® |J) ® [k), i, ],k= 0,1, and{|0),|1)} are defined in
(L-8). More explicitly

1 0 0
0 1 0

‘@1> =10 s |@2> =10 IR ‘68> = ) (22)
0

o
=

i.e., then-th row of the base vectd®y) is equal to unity and all other entries are zero.
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For this system the total spin operafor[1.5) is 1 (= + 22+ £3) (we seti = 1 in this study).
The z components of the angular momentum operafprs %Z', i =1,2,3, satisfy eigenvalues
equations

1 1
J12|©1234) = > |©1234), J1z|Os5678) = ~5 |O5678) ,
1 1
J22|©@1256) = > |©1256), Jz|O3478) = -5 |©3478) ,
1 1
J3,|@1357) = 5 |©1357), J32/@2468) = ~5 |©2468) - (2.3)

The quantum dynamics of this system is governed by the Schrédinger equati) =
H W), with

U]_(t)
N 8 Ua(t)
W)=y ik =Y vu®[eu)=| " |, (2.4)
i,j.k=T10,1} =1 :
Ug(t)

wherei, j,k = 0,1 and the vectof\P(t)) has been wrote as a linear combination of the computa-
tional basis|[(2]1,2 2).

The projection of the angular momentuygcan assume the valueg31/2,—-1/2,—3/2. So,
the problem can be reduced to two (uncoupledpBt= 3-level systems. It can be view explicitly
by writing the eigenvectors gf as

jz=3/2) =1000), |j;=—-3/2) = 111 ,
lz=1/2) ={[100,|010),00D)} ,
iz=-1/2) = {|011),]101),[110)} .

In this case, the transformation matrix betweenjthend canonical basg (P.1,2.2) has the form

lsx3 0 O
T=T*=T1'=| 0 0o 0 |,
0 O I3

and the Hamiltonian assumes the form

hgz O 0 O
0 hy, O O
0 0 hyp 0 |°
0 0 0 hap

THT =
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where
Poa+3 71 Jo3 Ji3
hy /o = Jo3 Pro—3 0 Ji2 ;
Ji3 J12 ~P1— 3 Jo1
Pri—3 Jo Ji2 Ji3

h_1/2= NP —~B10—3 10 J23 ,

NE D3 ~Bor+3 11

1

hi3/2 = +£%00+ 5 oo, (2.5)

and the notation

PBron = B+ (—1)"B+(—~1)"Bgs,,
Fon = d2+ (1) diz+ (—1)"Jps,

are introduced. The exact solution of the above problem can then bieabtay solving the two
uncoupled 3-level problems with an effective Hamiltonian givemby),. In what follow we study
the above system for some special choice of fields and interaction fusiction

2.1 Symmetric case
In the symmetric case, i.e., the case wBgft) = B(t) andJ,m(t) = J(t), we have
1
H=2Bj;+2J (M2+r284119) .

In this case, as it follows fronm.ﬂ)i/z =h_1/,, so thatthe problem is reduced to a 3-level system
problem.

Due to relation[(1]3), the evolution operatdg in the case under consideration can be written
as

3 3
Us= RgeXp|:—I2| (rt24+r®4 Flﬂ , Rs= eXp<_|BI Z\z'3> ,
i=

/J (t)dt, By (t /B

The first term inUs is just a rotation in the direction. Using now relation] (1.2) and the
definition of (M"it is possible to see that

(r24r23y F13)2 —9l,

wherel is the 8x 8 identity matrix. So the evolution operator assumes the form

3
=M {cosB. —i25sinB, (t)}
k=1

{cos[ J(t ] (rt?+ F23+Fl3)sin[2J| (t)]}.

N W
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For a system of three coupled quantum dots the interaction function caonbrelted by external
fields [§]. So, once this function is fixed, the above expression casdubto determine an external
field which provides any given quantum state. In particular, one cammdigie the fields by using
a maximally entangled pure state (e.g., a GHZ sfate [9]). The preparatiootoksul of states is a
fundamental element in the implementation of error correction algorithms fortgpeinformation
process.

2.2 Analogue of the Rabi problem for three-spin system

We consider the case when three spins are subject to the Rabi field, bastart magnetic
field Bo and perpendicular to it a rotating field,

B = (Bcoswt, Bsinwt, Bp) . (2.6)
In this case, the Hamiltonian assumes the form
1
H=2B)+ 20 (M2 4+ r=+1%) .

Once rotations commute with the interaction terms, we can ustating coordinate system
that rotates with the field, similar to the usual Rabi problfrh [10]. So, afteotiadion

Fy(wt) = exp(—iwtj;) , (2.7)
the Hamiltonian becomes
H' = %, "H%, — 1%, %, = 2B'I + %J (F241r84113)
w

B' = (B.0,By). By=Bo— .

We can now to align the constant figdd with the z direction, applying a second rotation

Ky(0) = exp(—lze ZZ&) , tan@ = B—B: :
i= 0

In this new frame we have
1
-1 12 , 23, 13

H" = 2, "H'%, = 283+ 53 (T2 4+ T4 1) |

B” = (0,0,B}), (B)* = (By)*+B?,
and the new Hamiltonian becomes

o1
H" = 2Bgj,+ 53 (T2 + T+ 17) .

The result coincides with the above considered symmetric case. Thusolbh@an operator
of the problem under consideration can be written as

U (t,to) = Z(t)%2y(0)U" (t,t0) %, 1(8)%; (to)
= Z,(1)%y(0)U" (t,10)%y(—6) , (2.8)
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with U” given byt the equation
3
U"=T] (congt—iZ'gsintt) X
k=1

[cos(iJ.) -~ lg (M?4+r#24+1r1)sin (2\].)} :

Of course the conservation of the projection of the angular momentum tileesgnly in the
rotation frame and not in the original one. However, the total angular momeittis an integral
of motion in both frames.

The eigenstates of the operafidr with eigenvalug (j +1) andj =1/2 are
1
1) = 7[!110> 01D)], [2) = 7[!101> 01D)] ,
1
3) = 7[!10® 00D)], [4) = 7[!0@ 00D)] ,

while for j = 3/2 they read

‘jz:_3/2> - ’111>7 ‘jz:3/2> = |000> )

1

j;=-1/2) = —[|011) + |101) +|110)] ,
iz />\@Hl>\>!0>]
1
—=[|001) +|010) +|100)] .
\@H 1)+[010 +[100)]

Using the evolution operator, we can, for example, determine the extegltattiat provides
the maximum for the transition amplitude between the stgtes 3/2) and|j, = —3/2). Transi-
tion amplitude of these states is

“221/2):

(112U |000) ||* = 16(sm6) [sin(ar) — sin(3a)]?

with U given by [2.B) and

_ B - _ 2, B2(t —
tanG—Bo_w/z, a—\/(Bo w/2)°+B?(t—to) .

The resonance of this transition occurs in the usual Rabi frequency
sinf=1= w=2Bg,

in the instant

T

2B

Using the procedure developed in Réf. [7], the above results carebdaisietermine external

fields in order to obtain the maximal probability amplitude for some other statesoud$e, due
to the momentum angular conservation, these amplitudes are non zero oshaties with the
sameJ?. In case of quantum dots, these transitions can be used, for example grottuction of
multimode field devices, which have applications in quantum optics (see[d]p., [1

t—tp=

IHere we set =t —tj.
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3. Conclusion

We show how the general problemm€oupled spin, i.e., alevel system, can be reduced to
n+ 1 uncoupled system where the most complex element is, at maist(@/2)!)?-level system.
After that, we use this procedure to reduce the problem of three coupitesl an 8-level system,
to a problem of a 3-level system in an effective field. We explicitly constheevolution operator
of the system for two special cases: when the fields and interaction asartiein all the spins
(the symmetric case), but with a arbitrary time-dependence in the field, aed thke spins are
subjected to a circular magnetic field (the Rabi problem). In the first caseeslts can be used
to establish the conditions of the fields that permit obtain a maximum entangledestat&(GHZ
state [®]) from an initial product state, what can be used to determine thdileel configuration
to implement an error correction algorithm. The second case can be usqdititlg calculate the
resonance frequencies of the system.
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