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We discuss the homological aspects of a connection between quantum string generating function
and formal power series associated with dimensions of chains and homologies of suitable Lie
algebras. Our analysis can be considered as a new straightforward application of the machinery
of modular forms and spectral functions (with values in the congruence subgroup of SL(2,Z))
to the topological vertex and the partition functions of Lagrangian branes, represented by means
of formal power series that encode Lie algebra properties. The common feature in our examples
lie in the modular properties of the characters of certain representations of the pertinent affine
Lie algebras, and in the role of Selberg-type spectral functions of hyperbolic three-geometry
associated with q-series in the calculation of string amplitudes.
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String Generating Functions and Spectral Functions of Hyperbolic Geometry

1. Introduction

We deal in this paper with applications of modular forms (and spectral functions related to the
congruence subgroup of SL(2,Z)) to the topological vertex and string generating functions. For
mathematicians topological vertex (and the respective string generating functions) may be associ-
ated to new mathematical invariants for spaces while, for physicists, they are link to quantum string
partition functions.

Having given the general glance let us now explain the connection between the specific con-
tents of the various sections in more detail. In Sect. 2 we will explore a remarkable connection
between Poincaré polynomials (generating functions) and formal power series associated with di-
mensions of chains and homologies of Lie algebras (Euler-Poincaré formula). From a concrete
point of view this paper consists on applications of spectral functions to quantum string partition
functions connected to suitable Lie algebras.

We show that the Poincaré polynomials (Sect. 3) and the associated topological vertex and
string amplitude can be converted into product expressions which inherit cohomological properties
(in the sense of characteristic classes of foliations [1]) of appropriate polygraded Lie algebras.

The final result for a single Lagrangian brane and stack of branes (Sect. 4) is written in terms
of spectral functions of the hyperbolic three-geometry associated with q-series.

2. Graded algebras and spectral functions of hyperbolic geometry

Before considering topological vertex and string amplitudes we would like to spend some time
on the relation between formal power q-series and homologies of Lie algebras. We would like to
show how combinatorial identities could be derived from initial complex of (graded) Lie algebras.
Our interest is the Euler-Poincaré formula associated with a complex consisting of linear spaces.
The relations between Lie algebras and combinatorial identities was first discovered by Macdonald;
the Euler-Poincaré formula is useful for combinatorial identities known as Macdonald identities.
The Macdonald identities are related to Lie algebras in one way or another and can be associated
with generating functions in quantum theory.

Let g be an Lie algebra, and assume that it has a grading, i.e. g is a direct sum of homogeneous
components g(λ ), where the λ ’s are elements of an abelian group, [g(λ ),g(µ)] ⊂ g(λ+µ). Let us
consider a module k over g, or g-module, which is a left module over the universal enveloping
algebra U(g) of g. Let Cn(g;k) be the space of n-dimensional cochain of the algebra g, with
coefficients in k. d = dn : Cn(g;k)→ Cn+1(g;k) as dn+1 ◦ dn = 0, for all n, the set C](g;k) ≡
{Cn(g;k),dn} is an algebraic complex, while the corresponding cohomology Hn(g;k) is referred
to as the cohomology of the algebra g with coefficients in k.

Let Cn(g;k) be the space of n-dimensional chains of the Lie algebra g and δ = δn : Cn(g;k)→
Cn−1(g;k). The homology Hn(g;k) of the complex {Cn(g;k),δn} is referred to as the homology of
the algebra g. We get d(Cn

(λ )(g;k)) ⊂Cn+1
(λ ) (g;k) and δ (C(λ )

n (g;k)) ⊂C(λ )
n−1(g;k) and both spaces

acquire gradings. The chain complex C](g), g=⊕∞

λ=1g(λ ), dimg(λ ) < ∞, can be decomposed as

0←−C(λ )
0 (g)←−C(λ )

1 (g) · · · ←−C(λ )
N (g)←− 0 (2.1)
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The well known Euler-Poincaré formula reads

∑
m
(−1)mdimC(λ )

m (g) = ∑
m
(−1)mdimH(λ )

m (g) . (2.2)

As a consequence, we can introduce the q variable and rewrite the identity (2.2) as a formal power
series:

∑
m,λ

(−1)mqλ dimC(λ )
m (g) = ∑

m,λ

(−1)mqλ dimH(λ )
m (g) = ∏

n
(1−qn)dimgn . (2.3)

In order to get the identity in its final form the homology H(λ )
m (g) has to be computed.

Spectral generating functions for string amplitudes. Having given the general scheme let
us now produce, for the benefit of the reader, the specific correspondence of the Poincaré series
(which can be associated with conformal structure in two dimensions [2]) and spectral functions of
the three-dimensional hyperbolic geometry. Thus, the infinite product identities are [3, 1]:

∞

∏
n=`

(1−qµn+ε) = ∏
p=0,1

ZΓ((µ`+ ε)(1− iρ(τ))+1−µ︸ ︷︷ ︸
s

+µ(1+ iρ(τ)p)(−1)p

= R(s = (µ`+ ε)(1− iρ(τ))+1−µ), (2.4)
∞

∏
n=`

(1+qµn+ε) = ∏
p=0,1

ZΓ((µ`+ ε)(1− iρ(τ))+1−µ + i/(2Imτ)︸ ︷︷ ︸
s

+µ(1+ iρ(τ)p))(−1)p

= R(s = (µ`+ ε)(1− iρ(τ))+1−µ + i/(2Imτ)) , (2.5)

where q = exp(2πiτ), ρ(τ) = Reτ/Imτ, µ ∈R, ` ∈ Z+ and ε ∈C. The Ruelle function R(s) is an
alternating product of more complicate factors, each of which is a Selberg-type spectral function
ZΓ(s) (the analytic and modular properties of the Patterson-Selberg spectral function ZΓ(s) the
reader can find in [1]).

At this point one can use the Ruelle functions R(s) to naturally generalize the result (2.4),
(2.5) for more general infinite product identities

∞

∏
n=m

(
1−qµ n+ε

)ν n
= R

(
s = (µ m+ ε)(1− iρ(τ))+1−µ

)ν m

×
∞

∏
n=m+1

R
(
s = (µ n+ ε)(1− iρ(τ))+1−µ

)ν
, (2.6)

∞

∏
n=m

(
1+qµ n+ε

)ν n
= R

(
s = (µ m+ ε)(1− iρ(τ))+1−µ + i/(2Imτ)

)ν m

×
∞

∏
n=m+1

R
(
s = (µ n+ ε)(1− iρ(τ))+1−µ + i/(2Imτ)

)ν
. (2.7)

3. Polygraded algebras and polynomial invariants

Let g be a polygraded Lie algebra, g=
⊕

λ1≥0,...,λk≥0
λ1+...+λk>0

g(λ1,...,λk), satisfying the condition

dimg(λ1,...,λk) < ∞. For formal power series in q1, ...,qk, we have the following identity:

∑
m,λ1,...,λk

(−1)mqλ1
1 · · ·q

λk
k H(λ1,...,λk)

m = ∏
n1,...,nk

(
1−qn1

1 · · ·q
nk
k

)dimgn1 ,...,nk . (3.1)
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We would like to stress that partition functions can indeed be converted into product expressions.
The expression on the right-hand side of (3.1) looks like counting the states in the Hilbert space of
a second quantized theory.

For more examples let us proceed to describing the properties of link homologies suggested
by the their relation to Hilbert spaces of BPS states [4]. Let H

sl(N);R1,...,R`

k, j (L) be the doubly-graded
homology theory whose graded Euler characteristic is the polynomial invariant Psl(N);R1,...,R`

(q)
(the bar means that this invariant is unnormalized invariant; its normalized version obtained by
dividing by the invariant of the unknot)

Psl(N);R1,...,R`
(q) = ∑

k, j∈Z
(−1) jqk dimH

sl(N);R1,...,R`

k, j (L). (3.2)

Here L is an oriented link in S3, we consider the Lie algebra g= sl(N) (there is a natural general-
ization to other classical Lie algebras B, C, and D [4]) and a link colored is given by a collection
of representations R1, . . . ,R` of sl(N). In order to be agree with the standard notations we use the
variables {q, t}, [5], when we discuss link homologies.

The graded Poincaré polynomial has the form [4]

Psl(N);R1,...,R`
(q, t) := ∑

k, j∈Z
qkt j dimH

sl(N);R1,...,R`

k, j (L) . (3.3)

By definition, it is a polynomial in q±1 and t±1 with integer non-negative coefficients. In addi-
tion, evaluating (3.3) at t = −1 gives (3.2). In the case Ra = � for all a = 1, . . . , `, the homol-
ogy H

sl(N);R1,...,R`

k, j (L) is known as the Khovanov-Rozansky homology, (KR)H
N
k, j(L), and its graded

Poincaré polynomial takes the form

Psl(N);�,···,�(q, t) = ∑
k, j∈Z

qkt j dim (KR)H
N
k, j(L) . (3.4)

The further physical interpretation of homological link invariants via Hilbert spaces of BPS states
leads to certain predictions regarding the behavior of link homologies with rank N (for more dis-
cussion see [4, 6]).

4. A single Lagrangian brane

Let us recall the connection between topological vertex and open string amplitudes in the
presence of stack of branes. It is known that in the case of a stack Lagrangian D-branes is ending
on one of the legs of the C3; the partition function is given by

F (q;V ) = ∑
ν

C/0 /0ν(q−1)TrνV . (4.1)

Here TrνV = sν(x) are the Schur functions, x = {x1,x2, · · ·} are the eigenvalues of the holonomy
matrix V , and Cλ µν(q) is the topological vertex [7]. Recall that Schur functions have the property
that sν/λ (Q) = Q|ν |−|λ |, ν � λ , and sν/λ (Q) = 0, otherwise.

For a single Lagrangian brane x = (−Q,0,0,0, · · ·) we get the well known partition function

F (q;Q) =
∞

∏
n=1

(1−Qq−n+ 1
2 )

by Eq. (2.4)
====== R(s = (α−1/2)(1− iρ(τ))+2) . (4.2)
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In order to be careful and to agree with the standard notations, we use the variables {Q,q, t}
when we talk about topological string amplitudes computed by the topological vertex, cf. [8].
This set of variables are related with our notations {Qα ,q = exp(2πiτ), t = exp(2πiσ)} as fol-
lows: τ = F1/2πi, σ = F2/F1, where we turn on a constant not self-dual graviphoton field strength
F = F1dx1 ∧ dx2 +F2dx3 ∧ dx4, and α = −

∫
C ω/F1 [8]. The above partition function of a single

Lagrangian brane can be interpreted in terms of the Hilbert series of the the symmetric product of
C. Indeed, sν(Q) is non-zero only for those partitions for which `(ν) = 1. These are exactly the
partitions which label the fixed points of the symmetric product of C, i.e., Sym•(C) has a single
fixed point labelled by the partition ν = (•,0,0, · · ·). A generating function of the Hilbert series of
the symmetric product is [9]

G(ψ,q) :=
∞

∑
k=0

ψ
k H[Symk(C)](q). (4.3)

In order to determine H[Symk(C)](q) note that the Rk is the ring of symmetric functions in the vari-
ables {z1,z2, · · · ,zk} and therefore the Schur functions provide a basis of Rk, Rk = 〈sν(z1, · · · ,zk)|
`(ν)≤ k〉. The condition `(ν)≤ k is necessary since sν(z1, · · · ,zk) = 0 for `(ν)> k. Rk is isomor-
phic to the Hilbert space Hk, generated by bosonic oscillator up to charge k. The Hilbert spaces
{Hk}∞

k=0 form a nested sequence H0 ⊂H1 ⊂H2 ⊂H3 ⊂ ·· · which corresponds to the nested
sequence of Young diagrams of increasing number of rows.

The C× action (on C q acts as a C× action z 7→ qz), which lifts to an action on the Sym•(C)
such that the Schur functions sν(z1, · · · ,zk) are eigenfunctions with eigenvalue q|ν |, becomes the
action of qL0 on the states in H (L0 = ∑n>0 α−nαn),

H[Rk](q) = TrHk q
L0 = ∑

ν |`(ν)≤k
q|ν | =

k

∏
n=1

(1−qn)−1 = s(k)(1,q,q
2, · · ·)

=

[
R(s = 1− iρ(τ))

R(s = (k+1)(1− iρ(τ)))

]−1

. (4.4)

Note that the Hilbert series of Rk in this case turns out to be the generating function of the number
of partitions with at most k parts. Thus the generating functions G(ψ,q) is then given by

G(ψ,q) =
∞

∑
k=0

ψ
kH[Rk](q) =

∞

∑
k=0

ψ
kTrHk q

L0 =
∞

∑
k=0

ψ
ks(k)(1,q,q

2, · · ·)

=
∞

∑
k=0

s(k)(ψ)s(k)(1,q,q
2, · · ·) = ∑

ν

sν(ψ)sν(1,q,q2, · · ·) = ∑
ν

sν(q−ρ)sν(ψ q−
1
2 )

= ∑
ν

sν t (qρ)sν(−q−
1
2 ψ) = ∑

ν

C/0 /0ν(q−1)TrνV = F (q;Q), (4.5)

where TrνV = sν(Q) and Q = q−
1
2 ψ . TrνV = sν(x) where x = {x1,x2, · · ·} are the eigenvalues of

the holonomy matrix V . Thus the partition function takes the form

F (q;V ) = ∑
ν

C/0 /0ν(q−1)sν(x) = ∑
ν

sν t (qρ)sν(x) =
∞

∏
k, j=1

(1+q−k+ 1
2 x j)

by Eq. (2.5)
======

∞

∏
j=1

R(s = (a j +1/2)(1− iρ(τ))+2− i/(2Imτ)) , (4.6)
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where a j ≡ logx j/logq. If we move the brane to infinity (Q = e−
∫

C ω 7→ 0) the contribution of the
higher modes is suppressed. On the other hand as the brane moves towards the origin (Q 7→ 1)
higher oscillator modes starts contributing with equal weight to the partition function. It is also
follows that the topological vertex C/0 /0(k)(q) has an interpretation as counting the number of states
of a given energy in the Hilbert space Hk. It is tempting to conjecture that the topological vertex
with all three partitions non-trivial has a similar interpretation in terms of spectral functions.

Stack of Branes. Let us consider the case of multiple Lagrangian branes on the one of legs of
C3. Then x = {x1,x2, · · · ,xN} and the partition function becomes

F (x,q) = ∑
ν

C/0 /0ν(q−1)sν(x) =
N

∏
j=1

∞

∏
k=1

(1+q−k+ 1
2 x j)

=
N

∏
j=1

R(s = (a j +1/2)(1− iρ(τ))+2− i/(2Imτ)) . (4.7)

It is clear that the partition function (4.7) is the generating function of the Hilbert series of sym-
metric products of C.
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