
P
o
S
(
I
W
C
S
E
 
2
0
1
3
)
0
0
1

 

 
 Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it 

 

Effecient Computation Methods for 3D Microscopic 
Ellipsometry 

Yia-Chung Chang1 
Research Center for Applied Sciences, Academia Sinica  
128 Sec. 2, Academia Rd., Nankang, Taipei, Taiwan 11529 
Email: yiachang@gate.sinica.edu.tw 
Address, Country 

Huai-Yi Xie 
Research Center for Applied Sciences, Academia Sinica  
128 Sec. 2, Academia Rd., Nankang, Taipei, Taiwan 11529 
E-mail: damoxie@gate.sinica.edu.tw 
 
We review theoretical models for describing light scattering from various distributions 
of micro/nano structures on a substrate. We review results obtained by rigorous coupled 
wave analysis (RCWA) and the multilayer Green’s function (GF) method with 
geometry-adapted basis functions and compare the pros and cons. We show that the GF 
method is particularly useful for calculating the ellipsometry spectra of a variety of 
systems efficiently and accurately. The calculated ellipsometric spectra can be 
compared with experimental data for a large frequency range to extract the critical 
dimensions of structure features. Finally, we show how to use the GF method to 
compute signals of microscopic imaging ellipsometry efficiently, including examples on 
light scattering spectra for ZnO microspheres and the polarization-dependent reflectance 
images. 
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1. Introduction 

Spectroscopic ellipsometry(SE) is a well established technology for determining thin 
film thickness and its optical constants. In the last two decades, it has been used in 
semiconductor industry to inspect the critical-dimension (CD) of periodic patterns on 
semiconductor chips designed for integrated circuit.[1] Such a technology is often called   
“optical metrology”. The critical dimension of features on a grating structure 
determined by optical metrology can achieve nanometer accuracy even though the 
wavelengths of light used are typically in the range of 200nm-800nm. The method relies 
on accurate fitting of simulated results fof the ellipsometric parameters (i.e. ratios of 
reflectivities for s- and p- polarized light) to the corresponding experimental data for a 
presumed geometry described by a few adjustable parameters. Here the s- or p-polarized 
light refers to light with the electric or magnetic field perpendicular to the plane of 
incidence. Optical metrology is a noninvasive characterization method, which is capable 
of probing buried structures in a semi-transparent layer. 
 
For optical metrology of the structure details of a design, an efficient alogrithm is 
needed in order to determine the critical-dimension in real-time. For one-dimensional 
(1D) periodic array of strcuture patterns on a multilayer substrate, the most popular 
computation method for optical metrology is the rigorous-coupled-wave analysis 
(RCWA). [2-10] In this method, the structure pattern is divided into many thin slices 
such that the dielectric-constant distribution in each slice can be considered z-
independent, where z is taken to be the axis perpendicular to the substrate. The electro-
magnetic fields in each slice are described as linear combinations of plane waves. A 
transfer matrix equation, which is obtained by matching boundary conidtions, is then 
solved to obtained the reflectivity. The computation time for such an algoritm scales 
like αM·N3, where N is the number of plane waves used and M is number of slices 
needed to describe the variation of the structure pattern along the z direction. α is a 
factor describing the payload of matrix diagonalization required in RCWA calculations.  
 
For two-dimensional (2D) periodic arrays of identical strcuture patterns or isolated 
structures in on multilayer substrate, the RCWA approach can become rather inefficient 
if the optical contrast between the featured material and background is high. In this case, 
the number of plane waves N needed to describe the electromagnetic field would be 
quite large. For example, a metallic structure embedded in a dielectric would require an 
expansion of the electro-magnetic fields in terms of least 50 planes in each direction, 
resulting an N value > 2500 for 2D arrays. For such systems, numerical methods based 
on the multilayer Green’s function (GF) approach become much more efficient. [11-14] 
The computation time for an algoritm based on the multilayer GF method scales like 
ν·M·N·lnN for periodic systems [11] and ν·M·N·K for isolated structures, where N is the 
number of plane waves needed in the expansion of the GF, ν is the number of iterations 
needed to solve the linear equation for light scattering, M is the number of slices needed 
to describe the electromagnetic field inside the structure, and K is the nmber of localized 
basis fuctions needed in each slice. For isolated structures with cylindrical or spherical 
symmetry, values of both N and K can be significantly reduced by using the symmetry-
adapted basis functions, making the method even more efficient. Thus the GF method 
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with suitably chosen basis functions can be a very effective tool for calculating the 
ellipsometric spectra for light scattering from various nanostrues. 
 

2. Rigorous coupled-wave analysis 

The Maxwell's equations for a non-magnetic medium without source terms are given by: 
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Combining Eqs. (1) and (2) leads to the wave equation 
2
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column vector of dimension 2N  and ( )e


  represents the direction of magnetic field, 
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= +  and ( ) 0
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, 1, 2,...,n m N= . z zk i= − ∂  remains a scalar in our 2N -dimensional Hilbert space. 
Since 0∇ =H , we have 

( ) ,z z x x y yK H K H K H= − +                                              (3) 
which then leads to the following linear equations for the magnetic fields[11] 
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2 2 1 1
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 (4)                       

The relationship between the magnetic fields and the electric fields can be obtained 
from Maxwell's equations as  
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( )

1

1
,

x z y y x x y y z

y z x x x x y y z
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2
1 2

21 .xy x x y
z z

yx y x y

HE K K K
k k

HE K K K
ε − −

    
= +      −       

                (6) 

Let  and x y

y x

H E
H E

   
′Ψ = Ψ =   −  

 , we get the following differential equations 

2 ( ) ,
( ) ,

z

z

L z
D z

λ∂ Ψ = Ψ ≡ Ψ
′Ψ = ∂ Ψ

                                                  (7) 

where  

( ) ( )
2

11
21 .x x y

y x y

K K K
D z L z

K K K
ε −−

  
= −      

                                  (8) 

The boundary conditions are:  and 'Ψ Ψ  continuous across a boundary along z . The 
matrix ( )L z  can be diagonalized by a similarity transformation: 

1 2 ,S LS Q− = Λ =                                                      (9) 
where Λ  is the diagonal matrix formed by the eigenvalues ( iλ ) of L , Q  is a 

diagonal matrix with entries i iq λ= , S  is the similarity transformation matrix 
whose columns are the eigenvectors of L . With the combination of decaying and 
growing waves, the wave function ( )zΨ  in each layer can be expressed as 

,j jq z q z Qz Qz
j j j j

j j
s e f s e g Se f Se g− −Ψ = + ≡ +∑ ∑ ,                            (10) 

,j jq z q z Qz Qz
z j j j j j j

j j
s q e f s q e g SQe f SQe g− −∂ Ψ ∝ − ≡ −∑ ∑ ,                     (11) 

where f  and g  are the vectors formed by if ’s and ig ’s which are to be 
determined by the boundary conditions. The wave functions are arranged in such a way 
that jq ze  represents a forward propagating or decaying wave in the positive z-direction 
and is therefore the physical propagating wave in the substrate, while jq ze−  represents 
a backward propagating or growing wave and is therefore not allowed in the substrate.  
 
Using the boundary conditions, we obtain the following transfer-matrix equation 
between any two consecutive layers j and j+1 

1

1

1 1

1 1

00 1 1 1 11
01 1 1 12 0
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−
+
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−
+ +

         
=            − −         

  + −    
= ≡       − +     

                  (12) 

where 1 1
1 1 and j j j j j jM S S N J J− −
+ +≡ ≡ . 

It is convenient to write 

.j j

j j j

f f
g R f

   
=   

   
         (13) 

Substituting Eq. (13) into Eq. (12) gives 

P
o
S
(
I
W
C
S
E
 
2
0
1
3
)
0
0
1



P
o
S
(
I
W
C
S
E
 
2
0
1
3
)
0
0
1

Efficient Computation Methods for 3D Microscopic Ellipsometry Yia-Chung Chang 

 
     5 

 
 

( )
( )

1 1

1 1,

j j

j j

Q d
j j j j j

Q d
j j j j j j

f e M M R f

R f e M M R f

− + −
+ +

− +
+ +

= +

= +
,        (14) 

which can be rewritten as 

( )
( )( ) ( )

1

1 1

1

1 1 1 ,

j j j j

j j j j j j j j

Q d Q d
j j j j j j j

Q d Q d Q d Q d
j j j j j j j j j j j

f M M R e f T e f

R e M M R M M R e e M M R T e

−+ −
+ +

−− + + − − +
+ + +

= + ≡

= + + = +
,  (15) 

where ( )1
2j j jM M N± = ± . Note that jR  is a square matrix of dimension 22N , which 

can be called the ‘Reflection matrix”. In a uniform medium (outside the grating layer),  
jR  is diagonal with the upper (lower) half representaing reflection coefficients for 

( )x yH H  field. Here, yH is the TM component, while xH  is related to the TE 

component ( yE  field) via 0

0z

x
y

k HE
k

= − in the uniform layer. So, RTE = - RHx. 

By taking advantage of the symmetry property of the shape of the objects in the 
periodic array, one can reduce the basis size by a factor proportional to the number of 
symmetry operations, which can speed up the computation significantly. 
 

 
Fig. 1. Near-field transmittances of the VA cells in the emitted xy plane by the RCWA method, in 
which the absorption axes of the up (down) polarizers are set to be θup = π/2 (θdown = π/2), and (a) φup 
= 0 (φdown = 0), (b) φup = π/4 (φdown = 0) and (c) φup = π/2 (φdown = 0). Near-fields with corresponding 
set-ups by the Jones method are shown in (d), (e) and (f), respectively. 
 
The RCWA method can also be applied for media consisting of periodic arrays of three-
dimensional birefringent (e.g. liquid-crystal) micro/nano structures. [15] The algorithm 
in Ref. 15 is formulated for stacks of micro/nano structures with isotropic or 
birefringent materials in an arbitrary order. Fig. 1 shows that the near-field 
transmittances are close to those obtained by the Jones method for small angles of 
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dominant diffraction, while the far-field diffractions are quite different. [15] These 
results have been verified by using the finite-difference time-domain (FDTD) method. It 
is shown that the near-field transmittances approximate to those obtained by the Jones 
method as the angles of the dominant diffraction are small, while the far-field 
diffractions are verified by the finite-difference time-domain method, indicating the 
validity of the algorithm. 
 
Recently, considerable efforts have been dedicated to the realization of 2D and 3D 
quasicrystal structures [16-18], in which the lack of translational symmetry is 
compensated by rotational symmetries not achievable by conventional periodic crystals, 
hence providing an alternative route for various optical applications in LEDs an dlasers 
[19]. By treating the quasicrystal structure as an irrational cut of a higher dimensional 
periodic structure, one can then apply the coupled-wave theory. Computation 
algorithms for simple 1D and 2D birefringent quasicrystals have been implemented to 
study the characteristic diffractions of the aperiodic structures.[20] Compared to 
traditional supercell method, the coupled-waves approach allows us to capture the entire 
infinite aperiodic quasicrystal in a single finite computational cell, albeit at only a finite 
resolution. Due to the large number of plane waves involved as we double the 
dimensionality (which changes the number of basis functions from N to M=N2). 
Fortunately, by using an importance sampling technique, one can reduce the number of 
basis functions (M) needed to obtain convergent results back to around a few times of 
N.[20] The calculated results display proper convergence/accuracy with suitable 
truncation of Fourier components in an efficient way, and show good agreement with 
results obtained by the FDTD method. The diffraction/reflection behaviors of two-
dimensional (2D) quasicrystal surfaces under various polarization and angles of 
incidence are then studied. Comparison of our RCWA simulation results for a 2D 
octagonal quasicrystal layer with those obtained by FDTD is shown in Fig. 2.[20] 

 
  

 
Fig. 2. Transmitted field |E| through a 2D octagonal quasicrystal layer calculated by FDTD (upper 
row) and RCWA (lower row) for three incident angles: (a) θ=0, (b) θ =π∕4, and (c) θ =π∕3. The 
thickness of the layer is 2 μm, and the number of Fourier components used is Ng =60. 
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3. Multilayer Green’s function approach   

Here we briefly review the GF method applied to a distribution of nanoparticles. Details 
of the method can be found in Refs. [11-14]. We write the wave function for the electric 
field in the form of linear combination of localized functions centered at sites where 
nanoparticles reside 

( ) ( )0
1

ii
i i

iu

e
N

= ∑ k RE r u r ,                       (16)  

where 0k  denotes the wave vector of the incident wave, i i≡ −r r R  denotes the spatial 
coordinate relative to a nanoparticle centered at iR  and ( )i iu r  is a local function which 
is non-zero only for r  in a cell surrounding iR . uN  is the number of nanoparticles in 
the sample area of interest. The Lipmann-Schwinger (L-S) equation for uN  
nanoparticles on a multilayer film reads, 

( ) ( ) ( ) ( ) ( )00
0

1
,

u
ji

N
ii

i i u j j j
j

e N d V e
=

′ ′ ′ ′= +∑∫ k Rk R u r E r r G r r r u r



 ,              (17) 

where r  is restricted in cell i , ( ), ′G r r  denotes the dyadic Green's function (GF) for 
the uniform multilayer background material, and ( )0E r  denotes the unperturbed electric 
field (i.e. solution to the system without the nanoparticles). ( ) 2

0( ) ( )j a b jV k r aε ε θ= − <r  
describes the perturbation due to replacing the dielectric constant of the background 
material (denoted by bε ) by the one for nanoparticle (denoted by aε ). ( )jr aθ <  
denotes a cut-off function, which is 1 for r  inside the  nanoparticle j (with radius ja ) 
and 0 otherwise. We define the Fourier expansion of the GF suitable for a laminated 
structure stacked along the z axis, 

( )
( )

( ) ( )2

1, ,
2

ni
n nd e z z

π
′−′ ′= ∫ k ρ ρG r r k g ,                                        (18)                               

where ( ),n z z′g  for a multilayer system is defined in Ref. [11]. Substituting Eq. (18) into 
Eq. (17) yields 

( ) ( )
( )

( ) ( ) ( ) ( ) ( )0
0 2

1
,

2

u
n i j n j ii

N
i ii n

i i u n n j n j j j j
j

d
N e k dk d e z z e V

φ

π
′− − −−

=

′ ′ ′ ′= +∑∫ ∫ ∫
k ρ ρ K R Rk Ru r E r r g r u r 



 ,    (19) 

                                                                                                                                  
where 0n n≡ −K k k . To solve Eq. (19), we expand the local function ( )i iu r  in terms of 
some basis functions in the form 
 ( ) ( ), Φi i µ µ

µ

= ∑u r C r ,                                                   (20) 

where iµC denote the vector expansion coefficients.  Substituting (5) into (4) and 
projecting into the basis set leads to a linear equation  

( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( ) ( ) ( )

0* *
' ' 0

*
'2 0

1

Φ Φ Φ

Φ , Φ ,
2

i

u
j n i j n j i

i

i
i i i i u i i

N a i in
n n i i j n j j j

j

d N e d

d
k dk d d e z z e V

µ

µ µ µ µ
µ

µ µ
µ

φ

π

−

′− − −

=

=

′ ′ ′ ′+

∑ ∫ ∫

∑ ∑∫ ∫ ∫ ∫

k R

k ρ ρ K R R

C r r r r r E r

r r r g C r r



 





    (21)
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which can be solved to obtain iµC on all sites. Once the local functions at all sites are 
solved, the total field on a plane (taken at 0z = ) above the nanostructures can be 
obtained via 

( ) ( ) ( ) ( ) ( )0
0 0

10 0 0, .i
j j j j

jcell

z z dz z d d e V
A

φ ρ ρ ′−′ ′ ′ ′ ′ ′ ′= = = + ∑∫ ∫ ∫ k ρE E g r u r


                 (22) 

The TE (s-polarized) and TM (p-polarized) reflectivities are related to the total field at 
z=0 by / 1; / 1,s y oy p y oyr E E r H H= − = − respectively, which can be used to obtain the 
ellipsometric parameters 1tan /p sr r−Ψ = and ( )arg /p sr r∆ = .   

 
3.1.Choosing the suitable basis functions 
If the nanoparticle has a spherical shape, the chosen symmetry-adapted basis functions 
are of the form 
     ( ) ( ) ( )1 ,m mj k r Y θ φΦ ≡r

  

,                                       (23)          
where ( )1j k r



 is the  spherical Bessel function of order   and ( ),mY θ φ


is the 
spherical harmonic function with quantum numbers ,m . If denote the cut-off value for 
  as c , then the number of basis functions used is 2( 1)cK = + . Note that all of these 
basis functions satisfy the Maxwell’s equations for a uniform material with dielectric 
constant aε ( for the nanoparticle) if we choose 2 2

1 0ak kε= . The key advantage of using 
the spherical harmonics basis for solving EM fields is that for each angular function 

( ')mY Ω


 selected, the radial function ( )1 'j k r


 is predetermined. Thus, the expansion 
of EM fields as described in (1) requires only a small set of unknown coefficients 
(determined by the maximum values of angular functions needed to obtain a convergent 
result), and the method becomes very efficient. For objects with diameter much smaller 
than the wavelength, the maximum value of  needed can be as small as 2 (requiring 
only 9 basis functions).  The method can be generalized to ellipsoidal objects via a 
coordinate scaling such that the objects 
become spherical in the new coordinate frame, 
and ( )iu r  in each object is expanded in 
terms of spherical harmonics basis functions 
within its own scaled coordinates. For such 
method to work, one of the principal axes of 
the ellipsoid must be along z. In this proposal, 
we will further extend the method to objects of 
arbitrary shape via the use of hybrid basis 
functions. First, we fill the majority of the 
volume of the object with a minimum number 
of ellipsoids (with diameters larger than 5% of 
the wavelength). The remainder of the volume 
will be filled by small parallelipipes or 
tetrahedrons. (See Fig. 3). ( )iu r  inside each 
ellipsoid is expanded in terms of 
spherical harmonics basis functions 
defined in a scaled coordinate frame such 

 
Fig. 3. Illustration of how to divide a general-shaped 
object into a few ellipsoids plus some finite elements.
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that the ellipsoid appears spherical. Outside the ellipsoids, ( )iu r  is expanded in terms 
of finite-element basis functions for small parallelipipes or tetrahedrons. Since the 
majority of the object is filled by ellipsoids, we only need a small number of additional 
finite-elements to describe the solution. Thus, our hybrid basis functions (spherical 
harmonics in ellipsoids plus finite elements) serve as a good basis for finding the full 
solution efficiently.  
 
3.2. Periodic and random distribution 
The above description is valid for any distribution of a collection of nanoparticles. For 
periodic and random distributions of nanoparticles of identical shape and size, the 
problem can be further simplified. For periodic distributions, all local functions within 
the nanoparticle are identical. We have ( ) ( )1i i i=u r u r  and ( ) ( )1j j jV V=r r  at all sites. 
Thus Eq. (19) reduces to  

( ) ( ) ( ) ( ) ( ) ( )0( )
1 0 1 1

1
, ,n

N
i

u n
n

N d e z z V′+ −

=

′ ′ ′ ′= +∑∫ k K ρ ρu r E r r g r u r

              (24)                                

where nK denote the reciprocal lattice vectors for the periodic array.  

For random distributions, all local functions ( )i iu r  may not be identical, but very 
similar. For a given site (say 1), we may approximate the local functions on other sites 
by ( )1 if u r  on an average sense, where f is called a “similarity” factor, which should be 
between 0 and 1. [12] We shall consider this similarity factor as a fitting parameter. 
Then Eq. (20) reduces to 

( ) ( )
( )

( ) ( ) ( ) ( ) ( )1 0 1 12 , ,
2

nin
u n n n n

dN k dk S d e z z Vφ
π

′−′ ′ ′ ′= + ∫ ∫ ∫ k ρ ρu r E r K r g r u r



,           (25) 

where 0n n= −K k k  and ( ) ( )11n nS f S= +K K  is the structure factor with ( )1 nS K defined as 

( ) ( ) ( ) ( )
2 2 2 2 2 21 1

2
/2 /2 /2

1 00
1

2 2e e e ,un j j c n c c
Ri K Rc

n n
j cell cell

S e J K R RdR
A A

λ λ λπλ π− − − − − −

≠

= ≈ −∑ ∫
K R R R RK    (26)  

where λc is the coherent length of light [13,14] and /u cellR A π= . cellA  is the average 
area occupied by a nanoparticle on the sample surface. 

4. Simulation results for a few examples 
4.1. Random distribution of Au nanoparticles 

In our previous works, we studied the ellipsometric spectra of a random distribution of 
Au nanoparticles [12] and effects of the presence of small clusters. [13,14] Scanning 
electron microscopy (SEM) pictures for the samples considered are shown in Fig. 
4.(from [13]) Using Eq. (19) we can solve the local function ( )1u r   inside a gold 
nanoparticle. Then, we use Eq. (22) to calculate the ellipsometric spectra for Ψ and Δ. 
We assume each nanoparticle has a spheroidal shape with lateral diameter d and height 
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h, and the nanoparticles are separated by an average distance p. We adjust the 
 

(a) (c)

(d)(b)

 

Fig. 4. SEM pictures of samples with random distribution of Au nanoparticles 
with diameters: (a) 20nm, (b) 40nm, (c) 60nm, and (d) 80nm. 

parameters d, h, p, and f for each sample until we get the best-fit for experimental 
spectra of Ψ and Δfor three difference angles of incidence (55°, 60°, and 65°). Another 
parameter, λc (the coherent length of incident light) is chosen to be 3500nm, which 
gives the best over-all fit for all samples considered. The results are shown in Fig. 5, 
and the best-fit parameters along with the mean-square-error for each fit are listed in 
Table 1.  

Here, we used cut-offs for basis functions and integration mesh points  (lc, N, M )  = 
(6,61,100) to ensure convergence,.[13] We find that the theoretical results agree 
reasonably well with SE measurements for the 20nm case. For samples with larger size 
nanoparticles, the fit is not as good, especially for photon energies below 2.5 eV as a 
result of the surface plasmonic effect. 

 

Table 1. Best-fit parameters used in the theoretical modeling for Au nanoparticles 
without clusters. 

Particle 
height  

h 
(nm) 

Aspect 
ratio  

(h/d) 

Simila
rity 

factor 
f 

Averag
e pitch 
p (nm) 

 
MSE 

18 0.95 1.0 50 5.50 
38 0.90 0.8 140 8.00 
66 0.98 0.7 170 9.94 
84 0.97 0.7 220 11.46 
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Fig. 5. SE measurements (solid curves) and model calculations (dash-dotted curves) without clusters for 
random distribution of nanoparticles with nominal sizes of (a) 20 nm, (b) 40 nm, (c) 60 nm, and (d) 80 nm 
for incident angles of 55°, 60°, and 65°. 

4.2. Clustering effect for random distribution of Au nanoparticles  

As shown in Fig. 4, there exist close-packed clusters of nanoparticles in samples with 
nominal values of d equal to 40nm, 60nm, and 80nm. For simplicity, we can model 
these close-packed clusters of nanoparticles as  pancakes with different diameters dα 
(the equivalent spheroid model), which are embedded in a random distribution of non-
aggregated nanoparticles and coupled to near-by nanoparticles. In order to describe such 
a complicated system, we use three types of local functions u1(r) for non-aggregated 
nanoparticles which are randomly distributed nanoparticles with identical diameters, 
cα(r) for small clusters with types labeled by α, and p(r) for large patch of clustering 
nanoparticles. Nu, Nc, and Np denotes the numbers of cells occupied by non-aggregated 
nanoparticles, clustering nanoparticles and large patch of clustering nanoparticles, 
respectively. The fractions of areas occupied by non-aggregated nanoparticles, 
clustering nanoparticles, and large patch of clustering nanoparticles,  are denoted by 

u u tf N N= , c c tf N N=  p p tf N N= , repectively. Here Nt=Nu,+Nc+ Np. We solve the 

local functions u1(r)  and p(r)  by using Eq. (25) with proper values for cellA . The local 
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function ( )αc r  are obtained by solving Eq. (25), including the coupling to ( )1u r . 
Namely, 

( ) ( )
( )

( ) ( ) ( ) ( ){ ( ) ( ) ( )}0 1 1 12 , .
2

nin
n n n u n

d
N k dk d e z z V f fS K Vα α α

φ

π
′−′ ′ ′ ′ ′ ′= + +∫ ∫ k ρ ρc r E r r g r c r r u r


    (27) 

Finally, we obtain the reflectivities by finding the electric field at z=0 according to 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0
0 0 1 1 1

10 0 0, [ ].i
u p

cell

z z dz z d d e f V p V f V
A α α α

α

φ ρ ρ ′−′ ′ ′ ′ ′ ′ ′ ′ ′ ′= = = + + +∑∫ ∫ ∫ k ρE E g r u r r c r r p r



 

                                                                  (28) 

Several pancakes with diameters evenly distributed between 2d and 4d are used in the 
modeling. Here we have assumed the fraction of cluster of type α is inversely 
proportional to the area of cluster Aα . We then fit the experimental spectra for Ψ and Δ 
again including the effects of clusters by adjusting the parameters cf  and pf . The cut-
offs for basis functions and integration mesh points are (lc, N, M ) = (6,61,100) to ensure 
convergence. The results are shown in Fig. 6, and the best-fit parameters along with the 
mean-square-error for each fit are listed in Table 2.[13] 

Comparing the spectra in Figs. 5 and 6, we notice a qualitative difference in the spectral 
lineshape for photon energies below 2.5 eV with and without the clustering effect. 
Including clustering effect, the Ψ  spectra display oscillatory behavior in the spectral 
features with a dip near 1.5eV and a broad peak covering 2 eV to 2.5 eV, indicating 
effects due to coupling of multiple plasmonic resonances, which gives better agreement 
with the experimental data. Furthermore, for photon energies above 5 eV, the agreement 
with experimental data for theΨ spectra is improved considerably when we also mix in 
the contribution from the patches of closely packed nanoparticles. The over-all MSE 
also becomes small with the inclusion of clustering effect. It has been tested that the 
effect of clustering Au nanoparticles modeled by pan-cake like ellipsods is similar to the 
results obtained by using actual clusters of closely-spaced Au nanoparticles averaged 
over various sizes and orientations.[14] 

Table 2. Best-fit parameters used in the theoretical modeling for Au nanoparticles with clusters. 

Particle 
height  
h (nm) 

Aspect 
ratio  
(h/d) 

Fraction 
of small 

clusters, fc 

Fraction of 
nanoparticle 
patches, fp 

 
MSE 

38 0.90 0.015 0.005 5.60 

66 0.98 0.02 0.03 6.36 

84 0.97 0.025 0.03 6.55 
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Fig. 6. SE measurements (solid curves) and model calculations (dashed dot curves) including clusters for 
random distribution of nanoparticles with nominal sizes of (a) 40, (b) 60, and (c) 80 nm for incident 
angles of 55°, 60°, and 65°. 

4.3. Whisphering gallery modes of ZnO microspheres 

Recently, detailed studies on the optical cavity modes of zinc oxide microspheres under 
the optical excitation have been reported [21]. The zinc oxide microspheres with 
diameters ranging from 1.5 to 3.0 μm were prepared using hydrothermal growth 
technique. The photoluminescence 
(PL) measurement of a single 
microsphere shows prominent 
resonances of whispering gallery 
modes at room temperature. The 
sharp resonances of whispering 
gallery modes in zinc oxide 
microspheres cover the entire visible 
window. They may be utilized in 
realizations of optical resonators, 
light emitting devices, and lasers for 
future chip integrations with 
micro/nano optoelectronic circuits, 
and developments of optical biosensors.  

 
Figure 7 (taken from Ref. 21) shows 
the PL spectra of isolated ZnO 

Fig. 7. PL spectra of a single ZnO microsphere 
placed on the Si substrate with diameter (a) 2.7 µm, 
(b) 2.5 µm, (c) 1.87 µm, and (d) 1.52 µm 
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microspheres with  diameter (a) D=2.70µm, (b) D=2.50µm, (c) D=1.87µm, and (d) 
D=1.52µm. Many sharp peaks occur in the visible and near-IR range, which are 
attributed to the resonances associated with whispering gallery modes (WGMs). The 
experimentally observed whispering gallery modes in the photoluminescence spectrum 
can also be simulated by using the Spherical harmonics-based Green’s function (SHGF) 
method described above. 
The simulation for the near-field intensity of light scattering from a 1 µm ZnO 
microsphere as a function wavelength is shown in Fig. 8(a). Also included for 
comparison is are results obtained by the Mie theory.[21] Excellent agreement between 
SHGF results and Mie Theory is obatined. Although the Mie theory is more accurate 
and efficient, it can only be applied to a free standing microscphere. The SHGF method 
can simulte a microsphere on a multilayer substrate, and examine the substrate effect, 
which can be significant on the near-field intensity observed on top of ZnO microsphere. 
The SHGF simulation results of the near-field for light scattering from a 1 µm ZnO 
microsphere placed on a SiO2 substarte coated with Au film of various thicknesses, d 
are shown in Fig. 8(b). The near-field intensity for ZnO microsphere on the clean  SiO2 
substarte (without Au film) is shown by the black curve, which is much weaker than the 
free-standing microsphere shown in Fig. 8(a), since the contrast for ZnO on SiO2  is 
much smaller than that for ZnO on air. The near-field intensity is enhanced when the Au 
film is deposited, and the enhancement increases with the Au film thickness until the 
effect saturates at around d=60nm. With the presence of Au film, the enhancement is 
largest near 550nm (where the plasmonic resonance occur) and the enhanced near field 
is stronger than the free-standing microsphere. 

 
 
 
Fig. 8. Near-field for light scattering from a 1 µm ZnO microsphere as a function wavelength for (a) free 
standing case and (b) case with a SiO2 substrate coated with Au film of various thicknesses, d. 

4.4. Microscopic Imaging ellipsometry of ZnO microspheres 

In this section, we try to compute the microscopic imaging ellipsometry of an ZnO 
microsphere on the substrate (the material is glass). In Fig. 9, we present the calculated 
reflectance 2

s sR r=  and 
2

p pR r=  for s- and p-polarized where r denotes the Fresnel 
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reflection coefficient for an isolated 1 µm ZnO microsphere on SiO2 substrate with 
normal incidence at three different wavelengths: 450nm,550nm,650nm, respectively. 
The frame size p is chosen to be 3 µm. These images illustrae the interference pattern of 
polarization-resolved light reflection from a microsphere. For normal incidence, the 
images of Rs and Rp are related by a 90-degree rotation. However, they will become 
different if detected by a microscopic imaging ellipsometer at a finite angle. 

(a) Wavelength=450nm

(b) Wavelength=550nm

(c) Wavelength=650nm
 

Fig. 9. Calculated reflectance sR  and pR  image for s- and p-polarized under three different 
wavelength 450nm,550nm and 650nm, respectively. An normal incidence is used and the size of ZnO 
microsphere is 1 µm. The material of the substrate is SiO2. 
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5. Conclusion 

We have reviewed the RCWA and multilayer Green’s function methods for studying 
various problems related to periodic/aperiodic distributions of nanostructures on or 
embedded in a multilayer film. With the use of spherical harmonics basis functions, the 
light scattering from a system involving ellipsoidal like objects can be handled 
efficiently and accurately. This technique allows us to analyze complicated 
arrangements of nanoparticles such as isolated nanoclusters or nanoclusters embedded 
in a random distribution of nanoparticles. Our modeling results for light scattering from 
such systems, including the coupling with clusters agree well with the experimental data 
obatined by spectroscopic ellipsometry. By adjusting the key parameters for describing 
the arrangements of nanoparticles of known properties in the fitting of ellipsometric 
spectra to the experiment, we can provide structural information of the distribution of 
nanoparticles, including the average size of nanoparticles, average spacing between 
adjacent particles, and the fraction of areas occupied by small clusters. Such information 
is very useful for nondestructive metrology of nanoparticles covered samples for 
application in nanofabrication. Furthermore, combining this optical metrology 
technique with an imaging ellipsometry, one can determine the 3D tomography of a 
semi-transparent structure and the distribution of its optical constant with micron-scale 
resolution laterally and nanoscale in depth, and at the same time the detailed 
arrangement of a few nanoscale objects inside the structure with nanoscale precision in 
3D.  

It has been shown that the RCWA method can be extended to liquid crystals (with 
birefringent media) and quasi-crystals (with quasi-periodic array) successively. For 2D 
quasi-crystals and 3D quasi-crystal slabs, it is still needs significant computation 
resource for RCWA calculation, since the computation time for RCWA would scale like 
M3. In the GF method, we can expand the GF in terms of the same number of plane 
waves (M) as adopted in RCWA (with importance sampling for k points in hyper-space). 
The computation time for the GF method would then scale like M K v× × , where K is 
the number of basis functions needed to describe the EM fields inside the objects in the 
unit cell and ν is the number of iterations needed to solve the linear equation (19). Since 
both K and ν are much smaller than M for 2D or 3D quasi-crystals, the GF method with 
suitable local basis functions can become much more efficient. For future development, 
it would be desirable to augment the spherical harmonics functions (which are most 
suitable for ellipsoidal objects) with other local functions or finite elements in order to 
handle a more general class of objects. 
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