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1. Introduction

The Standard Model (SM) is one of the great successes of modern physics, and all experiments
done so far are consistent with the predictions of the SM within reasonable errors. However, there
are certain deficiencies of the Standard Model that lead us to consider physics beyond the Standard
Model (BSM). The LHC has been built to discover the mechanism for electroweak symmetry
breaking and to probe certain potential new BSM particles which appear at the TeV scale, such as
some candidates for dark matter. Such high-energy colliders in general are well suited to production
of high-mass particles directly at their resonances and for probing processes with cross sections
that scale with energy. However, there are many low-energy precision experiments that also have
the ability to probe BSM physics. These generally fall into two classes: experiments that can
very precisely measure physics that is precisely predicted by the SM, such as muon g — 2, the
proton weak charge, and flavor-changing processes involving the CKM matrix. Another class of
experiments can look for tiny signals in places that the SM says should be either undetectably small
or exactly zero.

Precision measurements of nucleons fall into this class; they provide constraints on the SM
and can discern the signatures predicted for BSM particles at the 1-10-TeV scale. Knowing the
SM inputs to nucleon matrix elements will be necessary to constrain the couplings of dark-matter
candidates such as the neutralino, to relate the neutron electric dipole moment to the CP-violating
theta parameter, or to search for new TeV-scale particles though non-V—A interactions in neutron
beta decay.

One such unique and timely experiment is precision measurement of neutron beta-decay pa-
rameters at the ultra-cold neutron (UCN) source at Los Alamos National Laboratory (LANL) [1].
The advantage of using UCN is that the helicity-flip factor of m,/E, that makes it difficult to ob-
serve chirality-violating BSM corrections at high energies is of order unity in neutron decays, due
to the small kinetic energy of the emitted electron. As a result, the signal of interest is of the same
size as the SM background in UCN decays.

Using the neutron or nuclear beta decay to discover new particles would be conceptually quite
similar to how Fermi theory led to the discovery of the electroweak interaction and its bosons. Beta
decay was originally explained by Fermi by adding a new term to the fundamental Lagrangian
describing 4-fermion interactions. Such a theory introduces a coupling, the Fermi constant, that has
units of inverse-energy squared. This can be interpreted as a coupling constant of order 1 over some
energy scale squared. Looking at the value, you can see that this energy scale A would be around
100 GeV. People suspected that when the theory was directly probed in colliders at energies near a
hundred GeV, the Fermi theory would break down and some new physics must occur. As it turns
out, the Fermi theory is a low-energy effective theory approximating the electroweak theory, which
has 3 vector bosons, the W’s and Z. The theory was later probed in high-energy proton-antiproton
experiments at CERN, and the new particles were found with resonances around the scale predicted
by this interpretation of the Fermi theory. We can imagine that new particles beyond the Standard
Model can be predicted in just such a way: by first detecting the low-energy effective operators and
later directly probing them in a high-energy experiment.

The neutron beta-decay Hamiltonian contains a V — A current from the Standard Model weak
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interaction for the leptons and the quarks, and we add terms corresponding to new BSM physics:
Hess = GF <J€,eptA X J{}lﬂk +) EIBSMéi-ept X O?“ark> ,
i

where G is the Fermi constant, Jy_,4 indicates the left-handed current of the indicated particle,
and the sum includes operators with novel chiral structure. So in the context of our theory, new
operators will enter with the coefficients € that are related to the TeV scale of the particles. The
leptonic part is understandable using analytic techniques, but the quark operator in the context of
the nucleon will introduce some unknown coupling constants,

gr = (n|uoyyvd|p), gs = (nlud|p), (1.1)

which are nonperturbative functions of the nucleon structure, described in the SM by quantum
chromodynamics (QCD). Any deviation from the SM V — A current coming from the new scalar
and tensor interactions in the effective theory will require knowledge of the couplings g5 and g7 to
understand.

The knowledge of these coupling from experiment and previous QCD models are rather lim-
ited. The tensor charge g7 is the zeroth moment of transversity and can be studied through pro-
cesses such as SIDIS (semi-inclusive deep inelastic scattering). The HERMES and COMPASS
experiments [2, 3] presented their first estimates of g7 from data collected at 0*=24 GeV?. Ex-
perimentally, to estimate g7 one first extracts the contribution of individual quarks as a function of
the quark momentum fraction x at a particular Q. To obtain the contribution of each quark, the
results, estimated from measurements at a finite number of values of x, are integrated over the full
range 0 < x < 1. The isovector tensor charge is then given by the difference between the up and
down quark contributions. Since this analysis requires data over the full range of x, and the low-x
and high-x values are not well known, improvements in precision await future experiments. Current
extracted numbers are highly model-dependent. Combining SIDIS (HERMES and COMPASS) re-
sults with the Belle e e~ analysis [4, 2] of data collected at Q> = 110 GeV?, the best experimental
estimate of g7 at 0% = 0.8 GeV? is 0.771’8:;2. There are also estimates from purely theoretical
models. These include the Nambu—Jona-Lasinio model [5] and the chiral-quark soliton model [6];
unfortunately, they are not consistent with each other. Estimates from QCD sum rules [7] have a
large uncertainty. Overall, model estimates of the tensor charge range within 0.6,2.3 [8].

The nucleon isovector scalar charge gs, on the other hand, has no experimental measurements,
and theoretical estimates [9] (from different model approximations) give rather loose bounds:
0.25 < gg < 1. Given that gg 7 are poorly determined in both models and experiment, it would
be advantageous to use a theoretical tool, such as lattice QCD, that can give better quantitative
control over the uncertainties. We will revisit this in later sections.

Experimentally, two quantities characterizing neutron decay provide high sensitivity to new
physics by having small and precisely known Standard-Model background in neutron decay (n —
peV,): the Fierz interference term (b), which characterizes the deviation of the energy spectrum
of the emitted electrons from leading-order SM predictions, and the energy dependence of the
neutrino asymmetry parameter (B) that measures the asymmetry in the momentum of V, relative to
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the neutron polarization G,,.

De " Pv me 6nﬁv 6n'ﬁe
dU < F(E,) |l +a——+b—"+B A 1.2
(Ee) tapp thp B AT (1.2)

where p, and py are the outgoing electron and neutrino momenta, and E, , are the electron and
neutrino energies. F (E,) is the tree-level SM electron energy spectrum in the no-recoil limit.

Within the SM, a and A are O(1), whereas b and the energy-dependent component b, in
B = By + (m,/E,) by are O(10~3) and known from theory to the level of 107> [10]. Therefore,
deviations from the SM predictions for b and by, at a level larger than O(107>) would unambigu-
ously signal the presence of BSM interactions [10, 11]. These parameters are much less accessible
in high-energy experiments, because the interference of new interactions with the SM amplitudes
always involves a spin flip, which is suppressed by the factor m,/E, < 1, while in neutron decay
me/Ee ~ 1.

On left-hand side of Fig. 1, we show how precision measurements of b and by, at the 10~ level
can reveal the existence of new physics with mass scale A; in the multi-TeV range, which will be ex-
plored directly at the LHC. Furthermore, the two panels highlight the difference in bounds between
using previous phenomenological estimates for gg and g7 and current LQCD estimates. In these
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Figure 1: (Left) 90% confidence level (CL) allowed regions in the &g-€r plane implied by (i) the existing
bound on by characterizing the 07 — 0T nuclear beta decays (green horizontal band); (ii) projected mea-
surements of b and by, — b in neutron decay (red bow-tie shapes and blue regions) at the 1073 level; (iii)
hadronic matrix elements taken in the ranges 0.25 < gg < 1.0, 0.6 < g7 < 2.3 [8]. (Right) Combined 90%
CL allowed regions in the €g-€r plane based on existing limits on by+ from 0T — 0" nuclear beta decays
and future neutron-decay measurements with projected sensitivity of 1073 in b and b, — b. The four curves
correspond to four different scenarios for the hadronic matrix elements: 0.25 < gg < 1.0, 0.6 < gr <2.3 as
quoted in Ref. [8]; lattice results with current central values from Ref. [12]) and 6gs/gs = 50%,20%, 10%
with 8gr/gr =2/3 8gs/gs (this choice assumes that the ratio of fractional uncertainties in gs and g7 will
remain approximately constant as these uncertainties decrease). The effective couplings &g 7 are defined in
the MS scheme at 2 GeV. Note that the decrease in the allowed region becomes small for 8gs/gs < 20%,
below which the constraints are dominated by the experimental uncertainty.
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figures, b+ represents the constraint from 0" — 0" nuclear beta decays. While the LHC will be

able to produce WBSM

with masses in the 0.2—-3-TeV range and may provide precise measurements
of their masses, the proposed neutron experiments will provide the most precise measurement of
their spins and couplings, needed to reconstruct the TeV-scale theory that will replace the SM.
Moreover, even if WBSM is out of kinematic reach at the LHC (couplings are O(10~#) or smaller)
or swamped by background, the interactions that it generates may lead to observable effects in the
proposed neutron-decay experiments.

The right-hand-side of Fig. 1 shows that to keep the theoretical uncertainty on the reconstructed
couplings SFSM below the expected experimental error (estimated at 20%, assuming a signal at the
level of 1073), a precision of 10-20% is required for the matrix elements gg and g7-.

We see, therefore, that a key ingredient needed to connect theory to experiments is the precise
determination of the hadronic matrix elements of quark bilinear operators between the initial neu-
tron and final proton states; that is, gs 7. Since the initial and final states involve quarks at GeV
scale, these matrix elements receive quantum corrections from the strongly interacting sector of the
SM, QCD, irrespective of the TeV-scale theory. These corrections are intrinsically nonperturbative
because the QCD coupling constant that enters into these calculations is of order unity. Lattice
QCD (LQCD), a first-principles nonperturbative approach, provides the best known method for
calculating these matrix elements. For the rest of the proceeding, we will introduce the concepts
of lattice QCD for a general computational science background, followed by the methods used
to control the systematic uncertainty in the lattice calculations and a discussion of how our gs 7
impacts new-particle mass constraints.

2. QCD and the Lattice

QCD is the theory of the physics that dominates at very small scales, the femtoscale (10~'> m),
where fundamental particles (quarks and gluons) are bound inside the building blocks of matter,
protons and neutrons. This is far smaller than the size of the atoms (10~'% m) which form molecules
(nanoscale, 107°) in the materials we are familiar with. What do we learn by considering physics
at this tiny scale? For one, we can understand how fundamental particles make up the proton and
neutron, and more exotic particles such as hyperons. Further, we may try to see how they interact
with each other. At the nuclear level, we can learn how the residual strong force binds nucleons
together into the nuclei that form the cores of all atoms, that power the stars and perhaps one day
fusion power plants. An understanding of how nuclear structure arises from fundamental physics
may hold the key to the question of fine tuning (a mystery relevant to any carbon-based life forms).
The interactions between hadrons at small scale also impact objects at the astrophysical scale, such
as neutron stars. The strengths of these interactions can be input into descriptions of nuclear matter
in simulations of the conditions in the center of neutron stars, where incredible pressure and density
could allow exotic forms of matter to exist.

Quantum chromodynamics is the theory of the color force. It describes the strong interactions
between quarks and gluons using an SU(3) gauge theory. Given a QCD action S and interesting
observables whose properties are described by an operator &, one can compute the physical quan-
tities of interest using a path integral (integrating over all possible configurations of gluonic and
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Figure 2: A selection of timeslices showing the topological charge of the vacuum calculated on one gauge-
field configuration on a lattice with spacing approximately 0.1227 x 10~1> meters with 16 lattice sites in each
spatial direction. The evolution of the vacuum shown in this image occurs over 5.8 x 10~2> seconds. The
red regions correspond to instantons with positive topological winding number, while the blue correspond to
instantons with negative winding number.

fermionic fields A, y, ¥):

o  sAw _
(O, y.v]) = / DADY D SV VIGA, v, . 2.1)

One of the interesting properties of quantum chromodynamics is confinement. That is, we never see
free quarks in nature; rather, all we see are composite particles containing quarks, called hadrons,
such as the lightest hadron, the pion, and the proton and neutron of ordinary nuclei. At large
energy, the QCD coupling is small. We can simply make an expansion in terms of the coupling,
and it converges well. At low energy, however, where the strong coupling becomes large, the
theory becomes nonperturbative. Even just the vacuum of QCD is incredibly complicated; the
QCD vacuum teems with topological charge and the results of the broken quark chiral symmetry.
Figure 2 shows a few timeslices of the spatial distribution of topological charge in an example
QCD vacuum configuration. Unlike the classical vacuum, to describe this is a task that is nearly
impossible analytically. Therefore, nonperturbative approaches are essential to exploring QCD
physics at this energy scale.

In order to study the interesting physics in the low-energy region, in the 1970s Kenneth Wilson
proposed to discretize space and time in the path integral and to work in Euclidean space. Thus,
lattice QCD (LQCD) was born. It contains two scales that are absent in continuum QCD, one
ultraviolet (the lattice spacing a) and one infrared (the spatial extent of the box L). The problem
now only involves a finite number of degrees of freedom and can be put on a computer for numerical
integration.
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Figure 3: (left) Two-dimensional illustration of the spin structure of the Wilson Dirac operator. Gray
is zero; blue is real and positive; red is negative; magenta and green are positive and negative imaginary.
(right) Spectral plot for a two-dimensional Wilson Dirac operator. The blue circles indicate the results from
free-field, while the olive dots have U(1) interacting gauge fields. The smaller the m,, the worse the matrix
condition number.

Of course, if computational resources were not an issue, we could solve all the QCD problems
by brute force as long as we could write down the path integrals. However, it is not possible within
a human lifetime to do so, so we have to examine the problem and solve it more cleverly. The
number of degrees of freedom for a fermion here is the spatial volume times the number (3) of
colors, times the number (4) of spins. The number of spatial points varies, for example, a lattice
volume with 643 x 96 has rank 300M, and it cannot be fit onto a few workstations; a computational
cluster with thousands of cores is necessary. Lattice practitioners use systems ranging from small-
size clusters hosted at universities to national supercomputer centers, such as Hopper at NERSC,
or CPU-GPU hybrid systems, such as Keeneland at XSEDE.

In most cases, we spend the majority of computational hours inverting the Dirac operator.
Due to the breaking of continuous rotation symmetry, multiple versions of the Dirac operator can
be written on the lattice that describe the same physics in the continuum. Such a discrete Dirac
operator is a sparse and structured matrix, properties that we can take advantage of to develop
smarter solvers for our problem. To illustrate structure of our operator, we show a 2-dimensional
version with U(1) gauge fields (in reality, we use a much more complicated 4D, SU(3) theory); this
particular form is the Wilson Dirac operator:

. 1
D;Y‘lf}son = (m +d) 8x,x’ - Z 5 [(1 + Y”)Ux7 6x+ﬂ7x’ + (1 - YM)UJIM 5x>xl+ﬂj| : (22)
u

The left-hand side of Fig. 3 shows the spin structure of the two-dimensional version of Eq. 2.2.
We can see that it is highly structured along diagonals, with nonzero terms in regular places, but
mostly zero. The eigenvalues of this operator in the complex plane are shown on the right-hand
side of Fig. 3. When interactions are turned off, the eigenvalues are these blue circles, while the
olive points are the eigenvalues with thermalized U(1) gauge fields included. As the quark mass
is decreased, entire eigenspectrum is shifted to the left; thus, the lowest eigenvalues approach zero
and the matrix condition number diverges. This means that our inversion algorithms will run very
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slowly. Only recently have ensembles with physical pion masses become available; most of the
time, we do the calculation with multiple heavier masses, and a procedure for extrapolation is nec-
essary. Taking advantage of the structure of the operator, many techniques have been developed
to solve the Dirac equation faster: eigenvector deflation, multi-mass solvers, multigrid accelera-
tion, stochastic sources. Some such techniques have been examining the memory/communication
problem, which will be needed to run QCD effectively on systems including GPUs [13, 14, 15].

Once we have D~!, we can use it to calculate Green functions from which we will extract
physical quantities. For example, we can calculate the pion mass by creating a pion at a certain
point in space and time and annihilating it at another. In practice, we “contract” the inverse Dirac
matrix with some spin/color matrix:

Ca(t) = (7(0)| (1)) = (@ysd (0) dpsu(t)) = (D~ (0,1) (D" (0,1))7). 2.3)

After momentum projection to the rest frame, the resulting Green function declines exponentially
in the time direction with exponent equal to the mass. A similar process can be used in calculat-
ing nucleon matrix elements with nucleon interpolation operators and various insertion operators.
Details are given in the upcoming section.

3. Precision Neutron-Decay Matrix Elements

The QCD vacuum we choose is Ny = 2+ 1+ 1 flavors of highly improved staggered quarks
(HISQ) [16, 17, 18, 19, 20, 21] generated by the MILC Collaboration [22]. Staggered-type fermions
are notorious for their complications in calculations involving baryons, especially of matrix ele-
ments. Therefore, we use clover (O(a)-improved Wilson) fermion action in the valence sector for
our calculation of nucleon matrix elements. We use hypercubic (HYP) smearing [23] of the gauge
links before inverting the clover Dirac matrix needed to construct correlation functions [24, 25].
Using gauge fields averaged over a hypercube reduces short-distance noise (lattice artifacts) with-
out changing long-distance physics. One advantage of HYP smearing is that the renormalization
constants are close to the tree-level value, unity, as shown in Ref. [26].

To calculate the nucleon matrix elements (which lead to the gs 7 we need for constraining the
&s.1), we first calculate the matrix element of general form (x™ (57)|Or|x" (7)), where Or is V, =
uy,d for the isovector vector current, A, = uY, ¥sd for isovector axial current, etc., and jy; ) are the
initial and final nucleon momenta. Such a matrix element is extracted from an appropriate three-
point correlation function after Fourier transforming out the spatial dependence and projecting on
the baryonic spin, leaving a time-dependent three-point correlator of the form

3).,T N = - — —o =
G (1,175 57) = Z0 Y S Y Tap b (Bros') X (N (B, ') [OF | Na(Bi )8 (Bivs), (3.1
nn' s.s

where f, ,» contains kinematic factors involving the energies E, and amplitudes <7, between the
creation and annihilation operators and the corresponding states. The latter are obtained from
analysis of the two-point correlators with n and n’ labeling the different energy states (starting from
0). Zr is the operator renormalization, which is determined nonperturbatively. The projection T
used here is Thix = %(1 +7)(1+iys7). In this work we are interested in only the ground-state
matrix element withn =n’ = 0.
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Ensemble a(fm) M;MeV) L3xT ML atsep NMeasurement
al2m310 0.12 310 243 x 64 4.5 {8,9,10,11,12} 4052*
al2m220S  0.12 220 243 x 64 3.2 10 12000
al2m220 0.12 220 323x64 4.4 {8,10,12} 3832%
al2m220L  0.12 220 40° x 64 5.4 10 8000
a09m310 0.09 310 323x96 4.5 {10,12,14} 7048
a09m?220 0.09 220 483 %96 4.8 {10,12,14} 3560*
a09m130 0.09 130 64°> x96 3.8 {10,12,14} 3532

Table 1: The ensembles used to analyze the tensor and scalar charges. “*” indicates the statistics are
continuing to increase at the time of this report.

The usual suspects for the systematics of a lattice measurement are renormalization, lattice
discretization artifacts, excited-state contamination, unexpected chiral behavior and finite-volume
corrections. In our case, we have performed nonperturbative renormalization for all of our opera-
tors; however, we do not have O(a)-improved operators, and our plan is to perform calculations at
three lattice spacings to study and remove the discretization effects. From our current study on the
0.09-fm and 0.12-fm lattices, we find such effects to be insignificant within our current statistical
uncertainty. Chiral extrapolation to physical pion mass can also introduce big systematics; luckily,
we have one ensemble with pion masses as low as 130 MeV; thus, we are able to interpolate our
matrix elements rather than extrapolate. This gives us better control over this systematic.

Last but not least, in the following subsections, we discuss in greater detail the excited-state
contamination and finite-volume corrections. We find that these are more significant than what
others have observed in the past.

3.1 Excited-State Contamination

One of the notorious systematics in extracting precision neutron-decay matrix elements is
excited-state contamination, and many lattice-QCD calculations have been trying hard to address
this issue. There are two possible ways to reduce contributions from excited states: by reducing the
overlap of the interpolating operator with the excited states and by increasing the time separation
tsep =ty —t; between the source and sink to exponentially suppress excited-state contamination.
However, the signal-to-noise ratios worsen as one increases fgep; thus, a careful analysis extracting
ground-state nucleon matrix elements with limited size of #p is important.

To deal with this systematic, we consider the excited-state mass M; and its coupling to our
operator with amplitude «7{. We can write the three-point function with source shifted to #; = 0,
operator insertion at # = ¢ and sink at 5 =ty as

GO (1,73 B Br) ~ | 9|2(0]0r|0)e M0 =) 4|2 (1]Or|1)e M=) 1
Aot (0]Op|1)eMolI=1) g=Miltr=) oz o1 (1| Op|0) e~ U —10) g =Moltr=0) (3 2)

where (n'|Or|n) is an abbreviation for (N, (P,s") |Or| Nu(Pi,s)). To extract (0|Or|0) from the two-
and three-point functions, we make the following different kinds of fits. In each case, we apply a
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Figure 4: (Left column)The jackknifed difference in extracted charges due to ignoring the “RR” term,
(1|0r|1), when simultaneously fitting all the 7., three-point correlators for the axial, tensor, and scalar
charges (from top to bottom) as functions of m,zr The detailed parameters associated with the ensemble
labels can be found in Table 1. (Right column) Finite volume effects on axial, tensor and scalar charges
(from top to bottom); black circles and pink triangles correspond to m;L = 3.2 and 5.3, respectively.

10
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nonlinear least-square fitter that automatically selects a fit range appropriate to the form used. For
each form on each correlator, the fit range is expanded as long as the quality of the fit (in terms of
uncorrelated x?/dof) does not sharply decline.

In Ref. [26] where we concentrate on our results from a = 0.12 fm, we found using multiple
tsep ranging from 0.96 to 1.44 fm, our 2-2 sim method! and 2-2 RR method 2 are consistent; i.e.
the jackknifed difference in extracting ground-state charges are consistent with zero. However, as
we move to smaller lattice spacing, a = 0.09 fm, the difference becomes significant. This is not
too surprising, since the mass difference between the excited and ground state becomes smaller in
lattice units as lattice spacing a gets smaller; thus, it is important to include the higher-order terms
that people do not usually include. This also indicates the exploratory study of ., done at coarser
lattice spacing may not be useful any more.

The left column of Fig. 4 shows the jackknifed difference between including the “RR” term
(the excited-excited matrix element, (1|Or|1)) and the one without (only including one leading
matrix element; note that the popular “summation” method implicitly uses this assumption) for
axial, tensor and scalar charges. The effect is most evident for the axial charge and not as clear in
the tensor and scalar charges with our current statistics; our upcoming data may help to clarify the
trend.

3.2 Finite-Volume Effects

Unfortunately, there are not many studies nor effective-theory guides for the finite-volume
effects on the tensor and scalar charges. The most well studied case for this systematic is ga.
Therefore, we use g4 as a guide and estimate our finite-volume systematics for the other charges in
similar fashion.

Finite-volume effects are known to decrease the value of g4 by a significant amount in lat-
tice calculations. Two commonly used formulations to determine finite-volume corrections are
HBChHPT [27] and its variation SSE [28]. Groups that estimate their finite-volume corrections us-
ing the Refs. [27, 28] have reported small systematics, less than 1% for m;L ~ 3. However, an
earlier quenched RBCK study [29] saw more significant effects, as shown in Refs. [27, 28]. Re-
cent RBC/UKQCD Ny = 2+ 1 studies also see a significant central-value shift of about 0.05 and
0.12 with pion masses 670 and 420 MeV when the volume changes from 2.74 to 1.82 fm (which
corresponds to myL going from 9.3 to 6.2 and 5.3 to 3.9, respectively). QCDSF has multiple lat-
tice spacings (a € [0.06,0.078] fm) with various pion masses and volumes, and also sees a bigger
volume correction than suggested in Refs. [27, 28].

We carry out a detailed finite-volume study at the 220-MeV pion mass with lattice spacing
0.12 fm; this means that m;L ranges from 3.2 to 5.3. When we just look at the three-point/two-
point correlator ratios (a plateau fit to the middle time-insertion points would give unnormalized
charges), as shown in the right column of Fig. 4, we found a bigger increase in g4 when one
approaches large volume, but the difference in gg 7 becomes less clear within the statistical errors.

"We use ), o7, My and M, extracted from a fit to the two-point function, and simultaneously fit to all fsep three-
point functions. These amplitudes and masses are used in a two-parameter fit to the three-point function to estimate
(0|Or|0) and (1|Or|0). In the case of charges where both initial and final nucleon operators are at rest, we can assume
(0|Or|1) and (1|Or|0) are equal, and we analyze only the real part of the three-point function.

2Similar to 2-2 sim method, but we keep terms up to (1|Or|1) in the three-point function.
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Our strategy is to analyze these charges and model in the finite-volume correction terms that best
describe our data.

3.3 Continuum Extrapolation

We extrapolate all the charges to the continuum limit, i.e. n; = mi™* and V — oo, as shown in

Fig. 5, using a simple ansatz such as linear m2 for mass dependence and e~""#" for volume. With
our current statistics, there is no significant dependence on the lattice spacing; thus, we ignore that
dependence for now. In the future, we plan to include a third lattice spacing, 0.06 fm, and perform
a proper extrapolation.

We first look at the axial charge, which has a firm experimental measurement. Such an exercise
can give us an indication whether our simple ansatz is reasonable so that we can proceed to the less
known cases of the tensor and scalar charges. Our simultaneous fit to g4 gives 1.26(3), which
is consistent with the latest PDG average experimental value, 1.2701(25). Although our lightest
pion mass is 130 MeV, its volume is not big enough (whose mL is only 3.8); as we see in the
previous subsection on the finite-volume systematics, it requires finite-volume correction. Thus, a
simultaneous fit is necessary to extract the correct value.

Given the encouraging results from the axial charge, we proceed to the tensor and scalar
charges. The volume and mass dependence of the tensor charge is much milder than axial case, and
our preliminary result gives 1.03(4). On the other hand, given the relatively noisier signal in the
scalar charge, it is harder to see a clear trend; our current analysis give 0.86(13) at the continuum
limit. Future improvement of the statistics, especially on the 130-MeV ensemble would help to
reduce the error.

4. Impact on New-Physics Searches

Finally, we can combine the tensor and scalar charges with experimental data to determine
the allowed region of the parameter space for scalar and tensor BSM couplings (denoted €). We
can combine the current knowledge of g5 r and the existing experimental data for the nuclear beta
decay 0" — 07 transition and others, such as 8 symmetry in Gamow-Teller ®*Co, longitudinal
polarization ratio between Fermi and Gamow-Teller transitions in ''“In, positron polarization in
polarized '°’In and beta-neutrino correlation parameters in nuclear transitions. Using the gs,r from
the model estimations and combining with the existing nuclear experimental data, we get the con-
straints shown the outermost band in Fig. 6. Simply replacing the model estimations of gs r with
our present lattice-QCD values of the scalar and tensor charges, we find the constraints on & 7 are
greatly improved as shown in the middle contour in Fig. 6. There are ongoing and planned ultra-
cold neutron (UCN) experiments studying neutron beta decay to look for deviations from the SM
in the Fierz term and the neutrino asymmetry parameter (b and b, )to the level of 103 by UCNb/B
experiments at LANL or Nab at ORNL. Experiments taking advantage of the high-intensity source
of °He at CEPTA at University of Washington can also probe the tensor current [31] through pure
Gamow-Teller decay. Combining the expected data and existing measurements, and with lattice in-
puts of gs 7, we see the uncertainties in € r are significantly improved, as shown as the innermost
region. This shows the importance of the precision experimental inputs in combination with theo-
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Figure 5: Simultaneous extrapolation of axial (top row), tensor (middle row) and scalar (bottom row)
charges to continuum limit, m; = ml,)rhys (left column) and V — oo (right column). The detailed parame-

ters associated with the ensemble labels can be found in Table 1. In the case of axial charge, the red star and
horizontal line mark the PDG averaged experimental value. The bands in the plots have been projected to
V — oo (for left column) and my; = mE™* (right column).
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Figure 6: e5-¢r allowed parameter region using different experimental and theoretical inputs as discussed
in the text. All estimates are in the MS scheme at 2 GeV. (left) The constraints from low-energy nuclear
experiments and model estimates for gg r are shown by the outer blue region; and the improvement on
using lattice estimates of gg 7 given in this paper reduce this to the middle green region. The inner red
region indicates future bounds assuming UCN experiments provide |by —b| < 1073 and |b| < 1073, *He
experiments provide precision bounds, and errors in gg lattice estimates is reduced to 10%. The constraint
from radiative pion decay is shown by the two vertical lines. The low-energy constraints are compared to
those from the LHC. The dashed purple and inner dotted magenta lines are the near-term and future long-
term expectations using background inputs from Ref. [30].

retical advances. These upper bounds on the effective couplings €s 7 correspond to lower bounds
for the scales Ag r at 5.6 and 10.3 TeV, respectively, for new physics in these channels.

How do the constraints from high-energy experiments compare? We can estimate the &g 7
constraints from LHC current bounds and near-term expectations through effective Lagrangian

7 _%VM, (aid) (ePLv,) — %Vud(ﬁcr“vd)(éowPLve), 4.1
S T

where ngr = £1. and Ag 7 are connected to &€ 7 through vacuum expectation values. Using the
tail of the transverse-mass distribution in the reaction pp — eV + X (i.e. the region where my >
m$'"), we show three bounds from the LHC for different center-of-mass energies and integrated
luminosity. The transverse-mass cut is chosen such that the expected Standard-Model background
is less than one event. For the brown ellipse, the background is taken from the measured value at
CMS [30]; otherwise, the background is estimated by computing at tree level the transverse-mass
distribution due to the production of a high-p7 lepton from an oft-shell W. For further details
of this analysis, refer to Refs. [12] and [32]. In Fig. 6 we make an illustrative comparison of
the constraints on &g 7 (defined at 2 GeV in the MS scheme) projected limits from the LHC. The
outer dashed purple ellipse gives the LHC expected constraint using the full current 8-TeV dataset;
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the inner dotted magenta ellipse gives the expected final LHC constraint with maximum lifetime
luminosity at the 14-TeV design energy.

If experiments can measure these BSM signals to be nonzero, combining with our precision
gs,r calculations, we will be able to set a range of possible masses for potential new particles that
may be probed directly by high-energy colliders, such as the LHC. If experiment cannot rule out
the SM, then we will provide lower bounds for the scale of new physics in these channels, which
will help to rule out certain classes of BSM models. As experimental precision on these quantities
improve, it is important that the precision of these neglected lattice matrix elements do not be-
come an obstacle to probing the precision frontier for new physics. We will accomplish this in the
future by improving our calculation with physical pion masses, nonperturbative renormalization,
improved statistics and continuum extrapolation.
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