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1. Introduction

To compute all eigenmodes of a large sparse matrix is a very challenging problem. However,
for most studies, only a small subset of the entire spectrum plays the dominant role. Thus it is
feasible to use an iterative algorithm to project this subset of eigenmodes.

In lattice QCD, it is well-known that the low-lying eigenmodes (A;,g;) of the Hermitian
Dirac operator H (where H = 5D, and D is the Dirac operator which satisfies the ys-Hermiticity,
D' = y5D7s) can serve as a basis to tackle many problems. For example, to compute the quark
propagator x = D~'b, it amounts to solving the linear system H?x = D'b = ¢ with the conjugate
gradient algorithm (CG). Since the convergence rate of CG is proportional to the condition number

Ao/ 2oy

oo (Where Amax /Amin are the largest/smallest eigenvalues of |H|), the convergence can be

accelerated with the low-mode preconditioning. With the projected low modes (A;,g;) of H>, CG
can be performed in the orthogonal complement of the subspace spanned by the low modes, i.e.,

H’% = <I—Zq,-q?> c,
i

and the final solution is
I
x= x—i-zﬁq,-qi C.
1 1
Another application of the low-lying eigenmodes (of the Wilson-Dirac operator) is to obtain a
better approximation (chiral symmetry) of the overlap-Dirac operator Doy, for massless fermion [1]
H,

H2

w

Doy =my “ +% Sgn(Hwﬂ ) Sgn(Hw) = ) (L.1)
where H,, is the Hermitian Wilson-Dirac operator plus a negative parameter —myg (0 < mg < 2).
Since (Hv%)_]/ 2 cannot be evaluated exactly, one often uses the Zolotarev optimal rational approx-
imation [2]. For a given order of the optimal rational polynomial Rz(H2), it attains the optimal

approximation of (H2)~!/? in the interval [A2, A2

2. A2, of the spectrum of H2. Moreover, for a given

order, a smaller ratio (A2, / lr%lin) gives a better approximation. Thus, with the projected low modes

max
of H?

w?

the matrix-vector product (Do v) can be decomposed into the low-mode and the high-mode
parts as

Doy = mo{ 1+ Y gisen(A)g] + 15 HyRz(H?) (1 _ quqD }v, (1.2)

which yields better chiral symmetry than those without low modes.

The physical significances of the low-modes of the overlap Dirac operator are related to the
topological quantum fluctuations of the QCD vacuum. According to the Atiyah-Singer index the-
orem [3], the numbers of zero modes (n.) of the overlap Dirac operator provide an unambiguous
determination of the topological charge (Q;) of the gauge background,

0 = /a’4pr(x) =n; —n_ = index(Dyy), (1.3)
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where pg(x) is the topological charge density, and n.. is the number of zero modes of D,, with &
chirality. Then we can also obtain the topological susceptibility,

2
1= [ d'xipopo0)) = %1 (14)

which can be used to determine the low-energy constants (e.g., X, Fr) through the chiral perturba-
tion theory (ChPT) [4, 5]. Moreover, the spontaneous chiral symmetry breaking is related to the
spectrum of the low-lying modes near A = 0, as depicted by the Banks-Casher relation [6]

L=—(py)=mp(0), (1.5)

where p(0) is the density of eigenvalues near A = 0.
In general, to project a subset of eigenmodes of a large sparse matrix A, the standard procedure
is to construct a Krylov subspace of A from a starting vector ry,

H (A,r0) = {ro, Arg, A%ro, ..., A" 'ro}. (1.6)

Then an orthonormal basis of the m-dimensional subspace can be constructed, which are regarded
as approximated eigenvectors of A, the Ritz vectors.

In general, the Arnoldi method [7, 8] is an efficent way to perform the “implicit shifted QR
iteration” on the Krylov subspace during restarts, which has been implemented in the widely used
package ARPACK. However, for Hermitian matrices, it is more advantageous to use the Lanczos
algorithm [9] to obtain the orthonormal basis in the Krylov subspace. In lattice QCD, the ob-
jective is to obtain the low-lying eigenmodes of the positive-definite Hermitian matrix H2, which
has become a challenging large-scale computation. Thus it is crucial to develop highly efficient
algorithms and paradigms, based on the Lanczos algorithm and its variants.

This paper is organized as follows. In section 2, we outline the underlying theme for the pro-
jecton of the low-lying eigenmodes of the overlap Dirac operator in lattice QCD, and our imple-
mentation of the adaptive Thick-Restart Lanczos algorithms (a-TRLan). In section 3, we compare
the performances of our code and the widely used ARPACK, and present our test results. Finally
we conclude with some remarks.

2. Projection of the low-lying eigenmodes of the overlap-Dirac operator

In this section, we outline our scheme of projecting the low-lying eigenmodes of the overlap-
Dirac operator Dy, (1.1) for massless fermion.

The eigenvalues of D,y are lying on a circle in the complex plane with center at (m,0) and
radius of length my, consisting of complex eigenmodes in conjugate pairs, and (for topologically
nontrivial gauge background) real eigenmodes with eigenvalues at 0 and 2my satisfying the chirality
sumrule, ny —n_ +N; —N_ = 0[10], where n (N4 ) denote the number of eigenmodes at 0 (2my)
with =+ chirality. Empirically, the real eigenmodes always satisfy either (n,. =N_,n_ =N, =0)or
(n— =Ny, ny = N_ =0). In other words, the zero modes only appear in either positive or negative
chirality. Obviously, each eigenvector can be denoted by |6), satisfying

Doy |6) =A(0)]6), A(0) =mo(1+¢%), 6€[0,27). (2.1)
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Using [DoyDy,, ¥5] = 0, the eigenvector can be decomposed into positive and negative chiralities,

S+ 10), = PiSop(H,)Ps|8), = PLH,Rz(H2)Ps|0), =+c0s0|6), , (2.2)
where Py = (1£175)/2, |6), = P+ |0). Moreover, for complex eigenmodes, |8), and |) _ are
related to each other through the relation

1

10) = o (BSop—e ) [0)..,  0#0,m 23)

Thus our strategy of projecting the low-lying modes of D,y is as follows. First, we check whether
the zero modes are in the positive or negative chirality sector. Then we project the low-lying
eigenmodes in the same chirality sector of the zeromodes (if there are no zeromodes, just pick
either one of the chiralty sectors), and finally obtain the eigenvectors of the complex eigenmodes
using (2.3). To compute the matrix-vector product Rz(H2)|0), in (2.2) and (2.3), we use multi-
shift CG with low-mode preconditioning and the two-pass algorithm [11, 12]. Therefore, we first
project the low-lying eigenmodes of H2, before doing the low-mode projection of (2.2). In both
cases, we use the adaptive thick restart Lanczos algorithm (a-TRLan) [13, 14] for the low-mode
projection.

In the following, we outline the basic ideas of a-TRLan. Consider a N x N Hermitian matrix
A. After m Lanczos iterations, it gives

AQm - Qme + qum—H 6;21 (24)

where T, is a m X m tridiagonal matrix, and Q,, is the unitary matrix formed by the orthonormal
vectors {g;,i = 1,2,...,m} which are generated in the Lanczos iterations. The last term is called
the residual, where e,, is the unit vector with all elements zero except the m-th entry, and 3, is the
norm of the residual. After diagonalizing 7,,, we obtain m Ritz pairs, {(A;,y;) : 41 <Ap < -+ < Ay}
Since the Ritz values first converge to the exterior eigenvalues of A, we select k Ritz pairs from
both ends for the restart, namely i = 1,---,/,u,---,m, where k =m+1[1—u+ 1, and to perform
re-orthogonalization if necessary. Then the Lanczos iterations are restarted for k+1,---,m. The
same procedures (diagonalization, truncation, re-orthogonalization, and restart) are repeated until
the desired number of Ritz pairs are converged.

Theoretically, the subspace dimension m and the number k of selected Ritz pairs for the restart,
i.e., the triplet (/,u,m) can be tuned for each restart to optimize the overall performance, i.e., the
convergent rate versus the computational time of each restart, based on the estimates from all
previous iterations. This leads to the a-TRLan algorithm [14]. This amounts to maximizing the
object function (i.e., the ratio of the convergence rate and the computation time) at each restart,

o(mk,y) 2(m—k)\/¥
T(mk) — 2ty(m—k)(k+m—1)+2t,mk+t3(m—k)’

Fllmk) = 2.5)
where ® measures the convergent rate of the smallest non-convergent Ritz value (4, ), which can
be estimated as 2(m — k)./7, with ¥ = (Aiz2 — A141)/(Au—1 — Ais2), the effective gap ratio. Here
t1,h,t3 are average computation times (measured from all previous iterations) for reorthogonaliza-
tion, computing Ritz vectors, and matrix-vector product respectively.
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Figure 1: The residual of the last (the 250-th) Ritz pair of H> versus the number of restarts, for a-TRLan
with fixed m, a-TRLan with tunable m, and ARPACK respectively. Here m is the dimension of the Krylov
subspace. For the a-TRLan cases (the red and green points), the relaxation parameter Vv is set to 0.5.

According to our experience, taking u = m+ 1 is always the best choice. Thus we restrict our
discussions to the case k = [. In our code, the variation of m is limited to an interval [0, Mmax ],
with the initial m = mp;,. Assuming the number of converged Ritz pairs is n¢ony, then k is varied
with the constraint ncony + 1 < k < ko < m, where kg = m+ 1 — v(m — neony ), with v the relaxation
(input) parameter. At the j-th restart, after m; Lanczos iterations, and the diagonalization of the
tridiagonal matrix 7,,,, the code searches for the optimal values of (m;,1,k;;1) to maximize the
object function (2.5) with the constraint k1 < m;, which are then used for the (j+ 1)-th restart.

3. Performance Tests

In this section, we perform some tests to compare the performances of our code and ARPACK.
Our testing platform is a Supermicro server with dual Intel Xeon E5530 (2.40 GHz) CPU and 24
GB memory. There are totally 8 cores in the machine. Hence we run each of the tests with 8 threads
in parallel.

In Fig. 1, we plot the convergence rate of the low-modes of H2, for a typical configuration in
the gauge ensemble obtained by the dynamical simulation of 2-flavors lattice QCD with optimal
domain-wall quarks [15] on the 163 x 32 lattice at B =5.95 and mgua = 0.01 [16]. Here we
compare the performances of three different schemes: (1) a-TRLan with fixed m = 400, i.e., only
tuning k. (2) a-TRLan with tunable (m, k) for m € [400,800]. (3) ARPACK with fixed m = 400. In
each case, we project 250 low-lying eigenmodes of H2, and plot the residual of the last (the 250-th)
Ritz pair versus the number of restarts. The stopping criteira is 10~!2 for the residual of any Ritz
pair. For a-TRLan, the relaxation factor v is fixed at 0.5. Here we see that a-TRLan takes much
less restarts than ARPACK. Furthermore, a-TRLan with tunable (m, k) outperforms that with fixed
m. The computation time for each case is given in Table 1.
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Figure 2: The restart history of projecting the low-modes of H2 with the a-TRLan algorithm. Here 7y is
the number of desired eigenmodes, m is the dimension of the Krylov subspace, V is the relaxation factor. k is
the dimension at restart, rngopny 1S the number of converged Ritz pairs, and ny, is the number of matrix-vector
multiplication between each restart. In (a) m is fixed at 400, only k is tunable during the restarts. In (b) both
(m, k) are tunable during the restarts, in which the range of m is confined within [400, 800].

In Fig. 2, we plot the history of restart corresponding to the low-mode projection in Fig. 1. In
(a) the dimension of the Krylov subspace m is fixed at 400, thus the optimization amounts to search
for the optimal k for the next restart. On the other hand, m is not fixed in (b), thus the algorithm
searches for the optimal values of (m, k). Here we see that the value of k increases monotonically
with respect to the number of converged Ritz pairs n¢ony. In (a), since m is fixed, the required
Lanczos iterations after each restart (i.e., m — k — 1) gets fewer and fewer. On the other hand, in
the case of (b), m and k both increase monotonically with respect to ncony, the required Lanczos
iterations for each restart is almost the same, but the required number of restarts is less than (a).
Overall, (b) runs faster than (a) (see Table 1).

v=0.7 v=0.6 v=0.5 ARPACK
m my nR ny, time my nR ny, time my  nR ngy, time ng ng, time
300 300 361 33196 40095 | 300 346 28137 36799 | 300 361 33196 40095 | 1710 47728 163010
400 400 128 24433 30907 | 400 121 21502 26343 | 400 146 21569 29168 220 22255 56702
500 500 75 21466 30928 | 500 88 21526 30197 | 500 75 21466 31286 120 21571 57227
600 600 59 21445 32743 | 600 69 21468 33949 | 600 59 21445 32426 78 21262 59260
[300,800] | 412 243 31419 30791 | 458 203 26143 26907 | 565 186 24064 24581 n/a n/a n/a
[400,800] | 430 126 24387 21802 | 453 118 21510 25858 | 558 132 21546 23905 na n/a n/a
[500,800] | 500 75 21466 30994 | 500 88 21526 30224 | 546 104 21478 29620 n/a n/a n/a
[600,800] | 600 59 21445 32778 | 600 69 21468 34016 | 600 83 21499 32513 n/a n/a n/a

Table 1: Comparing performances of various schemes of a-TRLan and ARPACK, for the projection of low-
modes of H2. For a-TRLan, both fixed m and tunable m are considered for various settings of the relaxation
factor v = 0.7, 0.6, and 0.5. Here my, is the maximum dimension of the Krylov subspace in the projection,
ng is the number of restarts to complete the job, ny, is the total number of matrix-vector multiplication, and
the total computation time is in unit of second.

In Table 1, we compare the performance of projecting 250 low-lying eigenmodes of H> for
the same gauge configuration presented in Fig. 1. For the a-TRLan algorithm, we also compare
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different settings of v and m, with both cae of fixed m and tunable m. Here we show how the
setting of m and v affects the performance. For the cases with fixed m, it seems that setting m at
around 400 or 500 can attend a reasonably good performance for all the values of v, and setting
v = 0.6 seems to be the best choice. Now we compare the results of fixing m = my,;, and tunable
m € [Mpin, 800], where mp;, = 300, 400, 500, and 600 are the lower bounds for the tuning m. We
see that in some cases the maximum values of m (i.e., mys) during the projection may saturate.
For example, at v = 0.7, setting the lower bound m,;, to 500 or 600, my, (for the tunable cases)
remains constant during the entire projection. Thus, the restart histories of both fixed m = my,;;, and
tunable m € [mpy;n, 800] are exactly identical. On the other hand, if my, is not saturated, then those
with tunable m outperform their counterparts with fixed m. In the last three columns of Table 1, we
list the performance of ARPACK for the same projection task. Here neither m nor k is tunable in
ARPACK. Obviously, any scheme of a-TRLan in Table 1 outperforms ARPACK.

v=0.6 v=0.5 v=04 ARPACK

m my ng  ng, time my nRp  ng, time my ng  ng, time nR  na, time
300 300 13 2002 65657 | 300 15 1967 64754 | 300 19 1968 64744 | 27 1986 77613
400 400 8 2029 66827 | 400 9 1961 64619 | 400 12 2010 66249 | 12 1966 78014

500 500 6 2110 69561 | 500 7 2072 68479 | 500 6 1950 64730 8 2082 83368
600 600 4 2003 66130 | 600 5 2038 67498 | 600 6 1988 65884 5 1996 79350
[300,800] | 524 9 2126 69799 | 597 8 2017 66454 | 759 7 2018 66580 | n/a n/a nla
[400,800] | 460 7 1979 65134 | 535 7 1951 64260 | 685 7 2030 67240 | n/a n/a n/a
[500,800] | 532 6 2147 70828 | 589 6 2026 66835 | 651 6 1950 64729 | n/a n/a n/a
[600,800] | 600 4 2003 66238 | 627 5 2065 68286 | 817 5 2131 70770 | n/a n/a n/a

Table 2: The performance comparison of low-mode projection for Sy using the a-TRLan algorithm with
fixed and tunable m, and for various settings of the relaxation factor v = 0.6, 0.5, 0.4, together with the
performance of ARPACK. Here m,, is the maximum dimension of the Krylov subspace during the projection,
ng is the number of restarts to complete the job, ny, is the total number of matrix-vector multiplication, and
the running time is in unit of seconds.

Now, with 250 low-modes of H2, we proceed to project the 200 low-modes of the overlap
Dirac operator. For the matrix-vector product Rz(H2)|60), in (2.2) and (2.3), we use multi-shift
CG with low-mode preconditioning and the two-pass algorithm [11, 12]. In Table 2, we present our
test results of low-mode projection of S (2.2) for the same gauge configuration. Note that Sy - v
is a complicated matrix-vector operation since it involves two inner CG loops (for the two-pass
algorithm) [11, 12], which takes much longer time than H2 - v. For this configuration, the ratio of
the computation times of these two matrix-vector multiplications is

M ~ 1120.

TAv (HMZ/)
Thus, for the low-mode projection of S., the computation time is dominated by the total number of
matrix-vector multiplication na,. Consequently, a-TRLan with tunable m is not necessarily faster
than that with fixed m. Even though the object function is supposed to predict the optimal values
of (m,k), it does not guarantee to yield the smallest value of n4, which dominates the cost of the
computation. This issue requires further studies which are beyond the scope of the present paper.
From Table 2, setting v = 0.5 and m = 400 seems to give the best performance. From the last
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3 columns in Table 2, we see that the performance of a-TRLan is only 20% to 30% better than
ARPACK, unlike the case of H?> (see Table 1). We believe that there is still room for improving the
performance of the low-mode projection of 1 with a-TRLan.

At this point, it is instructive to compare the overall performances of our a-TRLan code and
ARPACK, for the projection of 200 low-lying modes of the overlap Dirac operator, including the
time in the projection of 250 low-modes of H>. Taking into account of the time (6550 seconds)
used in evaluating (2.3), our results in Tables 1 and 2 suggest that our a-TRLan code is about 1.5
times faster than ARPACK. Moreover, if one is only interested in the projection of low-modes of
the Wilson (clover) quark matrix, our results in Table 1 suggest that a-TRLan is more than 2 times
faster than ARPACK.

4. Concluding remarks

In this work, we have implemented the a-TRLan algorithm to project the low-lying eigen-
modes of the Dirac operators H,, and D,,. Our code searches for the optimal values of (m,k) at
each restart to maximize the object function (2.5) which is the ratio of the convergence rate (of
the smallest non-convergent Ritz value) and the computation time. For the low-mode projection of
H?, a-TRLan works very well and outpeforms ARPACK significantly. However, for the low-mode
projection of S, a-TRLan with fixed m is only about 20%-30% faster than ARPACK. Moreover,
a-TRLan with tunable (m,k) does not perform better than that with fixed m. To clarify this issue
requires further studies which are now in progress.

To summarize, we find that a-TRLan is an efficient algorithm for the projection of low-modes
of the quark matrix in lattice QCD. For the Wilson (clover) quark matrix, a-TRLan is more than 2
times faster than ARPACK. For lattice QCD with exact chiral symmetry, the projection of the low-
modes of the quark matrix includes two different projections (i.e., those of H2 and S..). Currently,
our a-TRLan code is about 1.5 times faster than ARPACK.
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