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1. Introduction

Recently, an exact pseudofermion action for hybrid Monte Carlo simulation (HMC) of lat-
tice QCD with one-flavor of domain-wall fermion (DWF) has been derived, with the effective
4-dimensional Dirac operator equal to the optimal rational approximation of the overalp Dirac op-
erator with kernel H = cHw(1+ dγ5Hw)

−1, where c and d are constants, and Hw is the standard
Wilson-Dirac operator plus a negative parameter −m0 (0 < m0 < 2) [1]. Since the action is exact
without taking square root, it does not require a large memory space to compute the fermion force,
unlike the widely used rational hybrid Monte Carlo algorithm (RHMC) [2]. In the following, we
refer the HMC with the exact one-flavor pseudofermion action as the exact one-flavor algorithm
(EOFA). Obviously, the memory-saving feature of EOFA is crucial for large-scale simulations of
lattice QCD on any platforms. This is especially true for GPUs, since each GPU has enormous
floating-point computing power but limited device memory. For example, using EOFA, two GPUs
(each of 6 GB device momory, e.g., Nvidia GTX-TITAN) working together is capable to simulate
lattice QCD with (u,d,s,c) DWF quarks on the 323× 64× 16 lattice, while this is infeasible for
RHMC. About the computational efficiency of EOFA, our studies in Ref. [1] suggest that EOFA is
compatible with RHMC. However, in Ref. [1], a salient feature of EOFA has not been exploited.
Namely, φ1 and φ2 [see Eq. (23) of Ref. [1]] can be updated at two different time scales, since the
fermion force of φ1 is much smaller than that of φ2. Now, applying the multiple-time scale method
to φ1 and φ2, we find that EOFA is more efficient than RHMC for all variants of DWF. In this paper,
we demonstrate that this is the case for the conventional DWF with kernel H = 2cHw(2+ γ5Hw)

−1

(i.e, d = 1/2, and ω = 1), and the optimal DWF [3] with kernel H = Hw (i.e., c = 1, d = 0, and the
reflection-symmetric ω), and the tests are performed for N f = 1 and N f =(2+1) QCD respectively.

Since the details of EOFA have been given in Ref. [1], we do not repeat them here. In the
following, we outline how we implement RHMC in our tests. The pseudofermion action for RHMC
of N f = 1 DWF can be written as

SN f =1
p f = φ

†(C†
1C1)

1/4(CC†)−1/2(C†
1C1)

1/4
φ , (1.1)

where C is defined as [4],

C(m) ≡ I−M5(m)Doe
w M5(m)Deo

w , C1 ≡C(1)

(Deo(oe)
w )x,y ≡

1
2
[(γµ −1)Uµ(x)δy,x+µ − (γµ +1)U†

µ(y)δy,x−µ ],

M5(m) ≡ [4−m0 +P+M+(m)+P−M−(m)]−1,

and the number of poles in the optimal rational approximation of (CC†)−1/2 and (C†
1C1)

1/4 is Np.
The pseudofermion field φ is generated from the Gaussian noise field η as follows.

φ =
1

[C(1)C†(1)]1/4 [C(m)C†(m)]1/4
η .

At this point, we note that one can use the following DWF action to reduce the memory consump-
tion in RHMC.

SN f =1
p f = Φ

†(C†
1C1)

1/2
Φ+φ

†(C†C)−1/2
φ ,
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where Φ and φ are independent pseudofermion fields. Then the fermion force due to Np poles
can be computed in n subsets, each with multiple-shift CG. Thus the memory consumption can be
reduced by a factor of n. However, it takes more time to compute these n subsets than just one
set with Np poles. To save time, one may apply the multiple-time scale method to these n subsets.
Nevertheless, one cannot apply the mass preconditioning for this action, which may be a drawback
of this approach. In the following, we use (1.1) for RHMC in all tests.

2. Memory Requirements for EOFA and RHMC

Defining MS =L3T×[8 bytes (for double precision real number)], then the link variables (with
each SU(3) matrix in the format of 2-column storage) take MU = 48MS, the conjugate momenta
MP = 32MS, and a 5D vector (on the 5-dimensional lattice) MV = 24NsMS, where Ns is the extent
in the fifth dimension.

For EOFA, it takes 2MU to store the old and new gauge configurations, MP for the conjugate
momenta, 2×24MS for φ1 and φ2 (pseudofermion fields) of each fermion, and MP for the fermion
force. To compute the fermion force by conjugate gradient, it needs 3.5×MV for the working
space. Thus the memory requirement for EOFA (with one heavy mass preconditioner) amounts to

MEOFA = 2MU +2MP +2×48MS +3.5×MV = 8(32+10.5Ns)MS. (2.1)

For RHMC, it takes 2MU (for old and new gauge configurations), 2MP (for conjugate mo-
menta and fermion force), and 2×12NsMS for the pseudofermion fields (the light fermion and the
heavy mass preconditioner) after taking into account of even-odd preconditioning. To compute the
fermion force, it needs (2+2Np) 5D vectors for mult-shift CG and working space, where Np is the
number of poles used in the rational approximation. Thus the memory requirement for RHMC is

MRHMC = 2MU +2MP +(3+2Np)(24NsMS) = 8[20+3(3+2Np)Ns]MS. (2.2)

From (2.1) and (2.2), the ratio is

MRHMC

MEOFA
=

20+3(3+2Np)Ns

32+10.5Ns
,

independent of the size of the 4D lattice. For example, for Np = 12 and Ns = 16, the ratio is 6.58.
In other words, for HMC of one-flavor QCD with DWF on the 323×64×16 lattice, EOFA takes
12 GB, while RHMC with Np = 12 requires at least 79 GB. Obviously, the memory-saving feature
of EOFA has significant impacts to large-scale simulations on any platforms, especially for GPUs.

3. Computational Efficiencies of EOFA and RHMC

To compare the efficiencies of EOFA and RHMC, we perform the following tests:

1. N f = 1 QCD on the 83×16×16 lattice

(a) Conventional DWF with kernel H = 2Hw(2+γ5Hw)
−1 (i.e., c = 1, d = 1/2, and ω = 1)

and m0 = 1.8.

3
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Figure 1: The change of Hamiltonian ∆H versus the trajectory in the HMC of one-flavor QCD with the
conventional DWF, for (a) EOFA, and (b) RHMC respectively. The line connecting the data points is only
for guiding the eyes.

(b) Optimal DWF with kernel H = Hw (i.e., c = 1, d = 0, and the reflection-symmetric ω

with λmin/λmax = 0.05/6.2) and m0 = 1.3.

2. N f = 1 and N f = (2+1) QCD on the 163×32×16 lattice

(a) Conventional DWF with kernel H =Hw(2+γ5Hw)
−1 (i.e., c= 1/2, d = 1/2, and ω = 1)

and m0 = 1.8.

In all cases, the gauge action is the Wilson plaquette action at β = 6/g2 = 5.95. In the molec-
ular dynamics, we use the Omelyan integrator [5], the multiple-time scale method [6], and the
auxiliary heavy fermion field [7]. For N f = 1 QCD, the sea-quark mass is set to mqa = 0.01, with
the heavy mass preconditioner mHa = 0.1 for conventional (optimal) DWF. For N f = (2+1) QCD,
the sea-quark masses are set to mu/da = 0.003 with the heavy mass preconditioner mHa = 0.03,
and the values of msa = 0.01 and its mass preconditioner mHsa = 0.1. In RHMC, the number of
poles in the optimal rational approximation of (CC†)−1/2 and (C†

1C1)
1/4 is fixed to Np = 12 for the

lattice size 83×16×16, while Np = 14 for 163×32×16.

3.1 L3×T = 83×16

First, we compare the HMC chracteristics of EOFA and RHMC. In Fig. 1, we plot the change
of Hamiltonian ∆H versus the trajectory number (after thermalization), for EOFA and RHMC
respectively. In both cases, ∆H is quite smooth without any spikes. Moreover, the measured values
of 〈exp(−∆H)〉 are:

EOFA RHMC
Conventional DWF 1.0003(16) 1.0038(17)
Optimal DWF 0.9991(17) 0.9994(18)
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Figure 2: The maximum forces of the gauge field and the pseudofermion fields versus the trajectory in the
HMC of one-flavor QCD: (a) EOFA, (b) RHMC.

They are all in good agreement with the condition 〈exp(−∆H)〉 = 1 which follows from the area-
preserving property of HMC.

In Fig. 2, we plot the maximum force (averaged over all links) in each trajectory, for the
gauge field, the heavy fermion field, and the light fermion field respectively. For both EOFA and
RHMC, the fermion forces behave smoothly in all trajectories. However, the fermion forces of
EOFA are substantially smaller than their counterparts in RHMC. The averages of the maximum
fermion forces are:

EOFA RHMC
(Fφ1)light (Fφ2)light (Fφ1)heavy (Fφ2)heavy (F)light (F)heavy

Conventional DWF 0.0046(1) 0.0331(2) 0.0609(1) 0.1318(2) 0.1076(1) 0.2855(1)

Optimal DWF 0.0009(2) 0.0139(2) 0.0487(1) 0.1810(1) 0.0695(3) 0.3534(1)

Note that for EOFA, the fermion forces of φ1 are much smaller than their counterparts of φ2.
This immediately implies that φ1 and φ2 can be updated at two different time scales. This will be
exploited in the tests on the 163×32×16 lattice.

For tests of N f = 1 QCD on the 83× 16× 16 lattice, we set the multiple-time scales as fol-
lows. With the length of the HMC trajectory equal to one, three different time scales are set to
{k0,k1,k2}= {1,1,10}, and the fields are updated according to the following assignment:

k0 : Uµ(gauge field),

k1 : φ1(EOFA, heavy fermion),φ2(EOFA, heavy fermion),φ(RHMC, heavy fermion),

k2 : φ1(EOFA, light fermion),φ2(EOFA, light fermion),φ(RHMC, light fermion).
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Thus the smallest time interval in the molecular dynamic is 1/(k0k1k2), and the numbers of mo-
mentum updates for {k0,k1,k2} are {8k0k1k2 +1,4k1k2 +1,2k2 +1} respectively, according to the
Omelyan integrator.

Using one core of Intel i7-3820 CPU@3.60GHz, we measure the average time per HMC
trajectory (T) and the acceptance rate (A) after thermalization, and obtain the following results.

EOFA RHMC
T (seconds) A T (seconds) A

Conventional DWF 6293(77) 0.980(9) 7365(96) 0.996(4)

Optimal DWF 8916(263) 0.980(9) 10657(538) 0.984(8)

Thus, in both cases (conventional DWF and optimal DWF), EOFA outperforms RHMC for
N f = 1 QCD on the 83×16×16 lattice.

3.2 L3×T = 163×32

Next we turn to tests of N f = 1 and N f = (2+ 1) QCD on the 163× 32× 16 lattice, for the
conventional DWF with kernel H = Hw(2+ γ5Hw)

−1. The details of the simulation of 2-flavors
of DWF have been presented in Ref. [4]. After the initial thermalization of 300 trajectories (done
with a GPU), we pick one configuration and use 4 cores CPU of i7-4820K CPU@3.70GHz to
continue the HMC simulation with EOFA and RHMC respectively, and accumulate 5 trajectories
in each case. With the length of the HMC trajectory equal to one, four different time scales are set
to {k0,k1,k2,k3}= {10,1,3,2}, and the fields are updated according to the following assignment:

k0 : Uµ(gauge field),

k1 : φ2(EOFA, heavy fermion),φ(RHMC, heavy fermion),

k2 : φ1(EOFA, heavy fermion),φ2(EOFA, light fermion),φ(RHMC, light fermion),

k3 : φ1(EOFA, light fermion).

Then the smallest time interval in the molecular dynamic is 1/(k0k1k2k3), and the numbers of
momentum updates for {k0,k1,k2,k3} are {16k0k1k2k3 +1,8k1k2k3 +1,4k2k3 +1,2k3 +1} respec-
tively, according to the Omelyan integrator.

With the statistics of five trajectories (all accepted), the average time (seconds) for generating
one HMC trajectory (after thermalization) is listed below.

EOFA RHMC
N f = 1 93241(290) 119445(408)

N f = 2+1 143099(833) 172569(588)

These results suggest that EOFA outperforms RHMC for N f = 1 and N f = (2+1) QCD with
the conventional DWF.

6
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4. Conclusion

In this paper, we compare the performances of EOFA and RHMC, for N f = 1 and N f = 2+1
QCD with DWF, on the 83× 16× 16 and 163× 32× 16 lattices respectively. Our results suggest
that EOFA outperforms RHMC, no matter in terms of the computational efficiency or the memory
requirement. This makes EOFA a better choice for dynamical simulations of lattice QCD with
DWF. Currently, TWQCD Collaboration is using EOFA to simulate lattice QCD with (u,d,s,c)
quarks on the 243×48×16 and 323×64×16 lattices, with Nvidia GPUs (GTX-TITAN).
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