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We discuss the Hessian PDF reweighting — a technique intended to estimate the effects that new
measurements have on a set of PDFs. The method stems straightforwardly from considering new
data in a usual χ2-fit and it naturally incorporates also non-zero values for the tolerance, ∆χ2 > 1.
In comparison to the contemporary Bayesian reweighting techniques, there is no need to generate
large ensembles of PDF Monte-Carlo replicas, and the observables need to be evaluated only
with the central and the error sets of the original PDFs. In spite of the apparently rather different
methodologies, we find that the Hessian and the Bayesian techniques are actually equivalent if the
∆χ2 criterion is properly included to the Bayesian likelihood function that is a simple exponential.
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1. Introduction

The flood of hard-process data from the LHC proton+proton collisions that can test and offer
further constraints for the parton distribution functions (PDFs) is nowadays so massive that the
need to efficiently quantify the implications of different measurements has called for novel analysis
techniques. To this end, an option that has gained some popularity is to make use of HERAFitter [1]
to check the constraining power of the new data. However, in most cases this has meant comparing
the PDFs obtained by using only the HERA deep-inelastic scattering data with the ones including
additionally a specific set of LHC data (see e.g. [2, 3]). Clearly, there is no guarantee that this
would reflect the impact of the new data in the global context. In this case the PDF reweighting
methods [4, 5, 6, 7, 8], discussed in this talk, should be more adequate.

2. The Hessian reweighting

Let us suppose we have a set of Hessian PDFs with a global tolerance ∆χ2. The PDFs have
been parametrized by some fixed functional form and the central set S0 corresponds to those pa-
rameter values a0

i that minimize a global χ2-function. The Hessian procedure [9] to quantify the
PDF errors is based on expanding this χ2-function around the minimum χ2

0 with respect to the fit
parameters ai and diagonalizing the Hessian matrix Hi j:

χ
2{a} ≈ χ

2
0 +∑

i j
(ai−a0

i )Hi j(a j−a0
j) = χ

2
0 +∑

i
z2

i . (2.1)

The coordinates of the central set S0 and error sets S±k in this z-space (“space of eigenvectors”) are

z(S0) = (0,0, ...,0) ,

z(S±1 ) = ±
√

∆χ2 (1,0, ...,0) , (2.2)

z(S±2 ) = ±
√

∆χ2 (0,1, ...,0) .
...

The idea elaborated in Refs. [7, 8] is to add the contribution of a new set of data {y}with covariance
matrix Ci j to the Eq. (2.1) above

χ
2
new ≡ χ

2
0 +∑

k
z2

k +∑
i, j
(yi[ f ]− yi)C−1

i j (y j[ f ]− y j) , (2.3)

and estimate the PDF-dependent theory values yi[ f ] by a linear approximation as

yi [ f ]≈ yi [S0]+∑
k

∂yi [S]
∂ zk

∣∣∣
S=S0

zk ≈ yi [S0]+∑
k

Dikwk, (2.4)

where

Dik ≡
yi
[
S+k
]
− yi

[
S−k
]

2
and wk ≡

zk√
∆χ2

. (2.5)

The function χ2
new is thus a second-order polynomial in variables wi and its minimum occurs at

~wmin =−B−1~a. with

Bkn = ∑
i, j

DikC−1
i j D jn +∆χ

2
δkn , ak = ∑

i, j
DikC−1

i j (y j [S0]− y j). (2.6)
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The corresponding new PDFs f new (omitting here all arguments and flavor indices) are easily ob-
tained, by the same approximation as in Eq. (2.4),

f new ≈ fS0 +∑
k

(
fS+k
− fS−k
2

)
wmin

k , (2.7)

and by rewriting the function χ2
new as χ2

new = χ2
0,new +∑i j δwiBi jδw j, one can also define the new

PDF error sets by the same procedure as above. The increase of the original χ2 — the “reweighting
penalty” — can be approximated by

P≈ ∆χ
2
∑
k=1

(wmin
k )2. (2.8)

3. The Bayesian procedures

The Bayesian PDF reweighting methods data back to the original works of Giele and Keller
[10] and were later on revived by the NNPDF collaboration [4, 5]. To apply these techniques in the
case of Hessian PDFs one constructs an ensemble of PDF replicas by [6]

fk ≡ fS0 +∑
i

( fS+i
− fS−i
2

)
Rik, (3.1)

where Rik are Gaussian random numbers. The PDF dependent observables are then obtained as
expectation values

〈O〉= 1
Nrep

Nrep

∑
k=1

O [ fk] , (3.2)

which coincide with [ fS0 ] if the non-linearities are small and the number of replicas Nrep is suffi-
ciently large. The Bayesian reweighting amounts to turning these averages to weighted ones

〈O〉new =
1

Nrep

Nrep

∑
k=1

ωk O [ fk] , (3.3)

where the weights ωk are determined solely from the new data. Two different functional forms have
appeared in the literature: The one proposed originally by Giele and Keller is a simple exponential

ω
GK
k =

exp
[
−χ2

k /2
]

(1/Nrep)∑
Nrep
k=1 exp

[
−χ2

k /2
] , (3.4)

and the one that has been explicitly shown [4, 5] to work with the NNPDF fit framework resembles
a chi-squared distribution

ω
chi−squared
k =

(
χ2

k

)(Ndata−1)/2 exp
[
−χ2

k /2
]

(1/Nrep)∑
Nrep
k=1

(
χ2

k

)(Ndata−1)/2 exp
[
−χ2

k /2
] . (3.5)

In both,
χ

2
k = ∑

i, j
(yi[ fk]− yi)C−1

i j (y j[ fk]− y j) . (3.6)

The reweighting penalty can be computed by

P≈ ∆χ
2
∑

i

(
1

Nrep

Nrep

∑
k

ωkRik

)2

. (3.7)
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4. Simplified example

To compare the different reweighting methods we invoke a simple example by constructing
two sets of pseudodata for a function g(x) = a0xa1(1− x)a2exa3(1+ xea4)a5 , shown in Figure 1. We
use the first one to construct a set of “Hessian PDFs” as outlined in Section 2 (using the same
functional form for g(x)) with a chosen tolerance ∆χ2. Then we take the second data set, work
out the predictions of the reweighting methods and compare those to a direct fit including both
of these data sets. The results of this exercise are shown in Figure 2. We observe that in the

Figure 1: Left-hand panel: Pseudodata (data set 1) used to construct the baseline fit. Right-hand panel:
Pseudodata (data set 2) used in reweighting.

Figure 2: Left-hand panel: Results of reweighting normalized to to the direct re-fit in the case ∆χ2 = 1.
Middle panel: As the left-hand panel but for ∆χ2 = 5. Right-hand panel: As the middle panel but rescaling
by ∆χ2 = 5 when computing the Bayesian weights.

case ∆χ2 = 1 the Hessian and Giele-Keller reweighting are in perfect agreement with the direct fit
(left-hand panel). If we increase the tolerance to ∆χ2 = 5, the Hessian procedure still accords with
the direct fit but the Giele-Keller method appears to fail (middle panel). However, the agreement
can be easily restored by rescaling the values of χ2

k in Eq. (3.6) as χ2
k → χ2

k /∆χ2 (left-hand panel).
In all cases the Bayesian weights which have been shown to work for the NNPDF-style fits (the
chi-squared weights) yield clearly different results.

5. CTEQ6.6 and inclusive jets at the LHC

Having now understood how to correctly reweight Hessian PDFs, we illustrate what would
be the effect of LHC inclusive jet data on the CTEQ6.6 PDFs [11] (for which which ∆χ2 = 100).

4



P
o
S
(
D
I
S
2
0
1
4
)
0
4
8

Hessian PDF reweighting meets the Bayesian methods Hannu Paukkunen

Specifically, we focus on the 7TeV jet measurements by the CMS collaboration [12] and use the
FASTNLO interface [13, 14, 15] for the computations. Before the reweighting CTEQ6.6 tends to
somewhat overpredict the experimental cross sections as shown in Figure 3 (left-hand panel) which,
however, largely disappears after applying the correlated systematic shifts (right-hand panel). Ini-
tially, χ2/N ≈ 2.1 (for N = 133 data points).

Figure 3: Left-hand panel: The CMS jet data (only the midrapidity bin) normalized by the predictions of
CTEQ6.6. Right-hand panel: As the left-hand panel but after applying the systematic shifts.

Figure 4: The new gluon PDFs normalized to CTEQ6.6.

The gluon distributions after apply-
ing the reweighting procedures are pre-
sented in Figure 4 revealing a decrease
in the large-x gluon PDF. As expected,
the Hessian and (rescaled) Giele-Keller
reweighting agree and only a modest
penalty of ∼ 20 units is induced. The
new global χ2 has changed by 21−
(2.1−1.75)×133≈−30 units. The re-
sult of Bayesian reweighting with chi-
squared weights is shown for compar-
ison and a similar but much too pro-
nounced effect is observed. In fact, in-
stead of decreasing, the new global χ2

has increased by 480− (2.1− 1.0)×
133 ≈ 330 units. This is also reflected in the new cross-section predictions shown in Figure 5:
While the Hessian reweighting (left-hand panel) predicts only a modest decrease in the cross
sections (moderating the overshooting observed in Figure 5), the Bayesian reweighting with chi-
squared weights (right-hand panel) would lead us to believe in much larger effect.

6. Summary

We have discussed how to estimate the effects that a new set of data would have on a global
Hessian PDF fit with fixed tolerance ∆χ2. By considering a simple example, we find that there
are two alternative techniques that give essentially the same answer and are equivalent to a direct
refit: the Hessian reweighting and a Bayesian technique with rescaled Giele-Keller weights. As a
practical example, we employed these methods in the case of inclusive jet production at the LHC.
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Figure 5: Left-hand panel: The jet cross sections after the Hessian reweighting (red lines) normalized by
the central CTEQ6.6 predictions. The systematic shifts corresponding to the reweighted PDFs have been
applied to the data. Right-hand panel: As the left-hand panel but using the Bayesian reweighting with
chi-squared weights.
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