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1. Introduction

The Color Glass Condensate is an effective field theory that provides a convenient framework
to describe strongly interacting systems at high energy where non-linear phenomena, such as gluon
recombination, become important. These nonlinearities are further increased when the target is
changed from a proton to a heavy nucleus, due to the A1/3 scaling of the gluon densities.

A key ingredient in the CGC calculations is the dipole-proton amplitude, whose evolution in
Bjorken-x (or equivalently, energy) is given by the the BK equation [1, 2] (with running coupling
corrections derived in Ref. [3]). Perturbative techniques can be used to derive the BK equation, but
its initial condition, the dipole-proton amplitude at initial x, is a non-perturbative input. It can be
obtained by performing a fit to proton structure function data measured in deep inelastic scattering
(DIS) experiments.

A crucial test for the CGC framework comes from the fits to the combined proton structure
function data from the H1 and ZEUS experiments at HERA [4, 5]. A good fit to this precise data
can be obtained by using a simple parametrization for the initial dipole amplitude, see Refs. [6, 7].

In this work we discuss how the dipole amplitude is obtained from the HERA DIS data
and how the obtained dipole-proton amplitude can be used to describe proton-proton and proton-
nucleus collisions. This is reported in more detail in Ref. [6]. We also report ongoing work on
the analysis of how tightly the DIS data constrains the initial conditions: we evaluate the uncer-
tainty estimate for the dipole amplitude and study the propagation of these uncertainties to other
observables.

2. Fitting the dipole amplitude

The H1 and ZEUS experiments have measured the proton structure functions F2 and FL, and
published the precise combined results for the reduced cross section σr [4], which is a function of
the proton structure functions:

σr(y,x,Q2) = F2(x,Q2)− y2

1+(1− y)2 FL(x,Q2), (2.1)

where x is the Bjoken-x, Q2 is the virtuality of the photon and y stands for the inelasticity. The
structure functions can be computed from the Color Glass Condensate framework by evaluating
the virtual photon-proton cross section

σ
γ∗p
T,L (x,Q

2) = 2∑
f

∫
dz
∫

d2bT d2rT |Ψγ∗→ f f̄
T,L (rT ,z)|2N(bT ,rT ,x), (2.2)

where Ψ
γ∗→ f f̄
T,L is the photon light cone wave function describing how the photon fluctuates to a

quark-antiquark pair, computed from light cone QED [8]. The QCD dynamics is encoded in the
dipole-proton amplitude N, and the summation is over active quark favours. In this work we do not
take into account the heavy quarks, but we note that if the heavy quarks are included one should
also include in the analysis the measured charm contribution to σr from Ref. [5]. We assume that
the impact parameter dependence can be factorized and we replace 2

∫
d2bT by σ0 (twise the proton

DIS area) which is a fit parameter.
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For the dipole amplitude at x0 = 0.01 we use a modified McLerran-Venugopalan model [9]:

N(rT ,x = x0) = 1− exp

[
−
(rT

2Q2
s,0)

γ

4
ln
(

1
|rT |ΛQCD

+ ec · e
)]

, (2.3)

where we have generalized the AAMQS [7] form (labeled as MVγ ) by also allowing the constant
inside the logarithm, which plays a role of an infrared cutoff, to be different from e. The other
fit parameters are the anomalous dimension γ and the initial saturation scale Q2

s,0. The last fit
parameter is the scale at which the running coupling is evaluated in transverse coordinate space,
which we write as µ2 = 4C2/r2 and fit C2. We fit three different initial conditions to the HERA σr

data, and the fit result is shown in Table 1.
The first initial condition used is the standard MV model where γ = ec = 1. The second

parametrization considered here is the MVγ in which γ is a fit parameter but ec = 1. The third
parametrization is labeled as MVe, and it has γ = 1 but ec is free. A motivation for the last
parametrization is that the Fourier-transform of S(rT ) = 1−N(rT ), which is proportional to the
unintegrated gluon distribution, is not positive definite when the MVγ parametrization is used.

3. Dipole amplitude for nuclear targets

We generalize the dipole-proton amplitude to dipole-nucleus scattering by using the optical
Glauber model, and write the dipole-nucleus amplitude NA as

NA(rT ,bT ) = 1− exp
(
−ATA(bT )

2
σ

p
dip

)
, (3.1)

where σ
p
dip is the total dipole-proton cross section. In order to satisfy the requirement NA → 1 at

large dipoles we use a non-unitarized version of the dipole-proton cross section and obtain (for
more details, see Ref. [6])

NA(rT ,bT ) = 1− exp
[
−ATA(bT )

σ0

2
(rT

2Q2
s0)

γ

4
ln
(

1
|rT |ΛQCD

+ ec · e
)]

. (3.2)

4. Uncertainty analysis

The experimental uncertainties can be propagated to the fitted dipole amplitude using the Hes-
sian method [10] where one uses a quadratic approximation

χ
2 ≈ χ

2
0 +∑

i j
Hi j(ai−a0

i )(a j−a0
j). (4.1)

Here the best fit parameters, that minimise χ2, are S0 = {a0
i }, and the Hessian matrix Hi j can be

related to the second partial derivatives of χ2 with respect to the fit parameters. The eigenvectors of
the Hessian matrix serve as an uncorrelated basis for the error sets of the fit parameters S±i . Using
the error sets one can, following the procedure used in Ref. [11], compute an uncertainty estimate
for any quantity X that depends on the dipole amplitude as

(∆X±)2 = ∑
k

[
max

/
min{X(S+k )−X(S0),X(S−k )−X(S0),0}

]2
. (4.2)

In our preliminary analysis we construct very conservatively the error sets such that ∆χ2, the dif-
ference of χ2 obtained by using the best fit set S0 or the error set S±k , is chosen to be ∆χ2 ≈ 36.
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Model χ2/N Q2
s,0 [GeV2] Q2

s [GeV2] γ C2 ec σ0/2 [mb]

MV 2.76 0.104 0.139 1 14.5 1 18.81
MVγ 1.17 0.165 0.245 1.135 6.35 1 16.45
MVe 1.15 0.060 0.238 1 7.2 18.9 16.36

Table 1: Parameters from fits to HERA reduced cross section data at x < 10−2 and Q2 < 50GeV2 for
different initial conditions. Also the corresponding initial saturation scales Q2

s defined via equation N(r2 =

2/Q2
s ) = 1− e−1/2 are shown. The parameters for the MVγ initial condition are obtained by the AAMQS

collaboration [7].

5. Single inclusive particle production

The gluon spectrum in heavy ion collisions can be obtained by solving the classical Yang-Mills
equations of motion for the color fields. For kT & Qs it has been shown numerically [12] that this
solution is well approximated by the following kT -factorized formula [13]

dσ

dyd2kT d2bT
=

2αs

CFkT
2

∫
d2qT d2sT

ϕp(qT ,sT )

qT
2

ϕp(kT −qT ,bT − sT )

(kT −qT )2 . (5.1)

Here ϕp is the dipole unintegrated gluon distribution (UGD) of the proton [14 – 16] proportional
to the two-dimensional Fourier transform of 1−NA, where NA is the dipole amplitude in the ad-
joint representation. The impact parameter dependence is assumed to factorize. For a detailed
expressions, see Ref. [6]. This gives the invariant yield as

dN
dyd2kT

=
(σ0/2)2

σinel

CF

8π4kT
2
αs

∫ d2qT

(2π)2 qT
2S̃p(qT )(kT −qT )

2S̃p(kT −qT ), (5.2)

where S̃p is the two-dimensional Fourier transform of 1−NA.
Assuming that |kT | is much larger than the saturation scale of one of the colliding objects we

obtain the hybrid formalism result

dN
dyd2kT

=
σ0/2
σinel

1
(2π)2 xg(x,kT

2)S̃p(kT ), (5.3)

where xg is the integrated gluon distribution function. For it we can use the conventional parton
distribution function, and in this work the CTEQ LO [17] pdf is used. Note that the overall normal-
ization factor is obtained by using both the proton area measured in DIS, σ0/2, and the inelastic
proton-proton cross section σinel, consistently in the calculation.

6. Results

In Fig. 1 we show the single inclusive π0 and negative hadron yields computed using the hybrid
formalism and compared with the RHIC data [18 – 20]. As the calculation is done at leading order,
it is not surprising that overall normalization does not agree with the data, but a normalization factor
K = 2.5 is needed. As we consider different proton areas consistently when deriving the hybrid
formalism result and obtain a correct normalization factor for the LO calculation, the absolute value
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Figure 1: Single inclusive particle production
at forward rapidities compared with the RHIC
data [18 – 20].
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Figure 2: Charged hadron and π0 production at
midrapidity compared with the LHC data [21, 22].

of the K factor quantifies how much the LO result differs from the data. The comparison with the
LHC data [21, 22] is shown in Fig. 2. We notice that even though the standard MV model gives
relatively good agreement with the σr data, and especially works well with the RHIC forward data,
comparison with the midrapidity LHC measurements clearly rules out the MV parametrization.

The computed reduced cross section and the uncertainty estimates are compared with the
HERA data in Fig. 3. Due to the accuracy of the data the uncertainty band is quite narrow, but
the agreement with the data is very good except at largest Q2 that is not included in the fit. As a
second application we show in Fig. 4 the nuclear suppression factor RpA = dN pA/NcolldN pp and
compare with the ALICE data [23]. Even though we have chosen to use very conservative error
sets, the effect on RpA is very small. This suggests that RpA is not sensitive to the details of the
dipole amplitude, and thus RpA is a solid CGC prediction. We have analytically shown in Ref. [6]
that we get midrapidity RpA→ 1 at all

√
s at large pT which is consistent with the ALICE data.
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