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For hadrons, transverse densities are realized as proper densities when their structure is studied

within the light front formulation of their internal dynamics. We calculate transverse densities

from form factors decomposing the electromagnetic currentand energy momentum tensor of the

nucleon as projections of local products of light cone wave functions (LCWFs) of pion-nucleon

systems. In our results, from a partonic interpretation, a mechanical picture of the nucleon

emerges at its periphery in which the structure and dynamicsare dictated byχEFT. The local

products of LCWFs are generalized parton distributions (GPDs), and as such we further utilized

them in characterizing and quantifying the dynamics of peripheral partons and its contribution to

the nucleon’s intrinsic properties, e.g., to its spin via orbital angular momentum. For transverse

densities, this relation emphasizes their universality which makes them a natural subject to be

studied in high and low energy experiments which are sensitive to the nucleon’s chiral periphery.
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1. Definition

Transverse densities are computed from two-dimensional Fourier integrals of form factors [1],

ρ(b)≡
∫

d2∆⊥
2π

ei(b⊥·∆⊥)F(∆2 =−∆2
⊥). (1.1)

They describe distributions projected on the nucleon’s transverse plane. While three-dimensional
Fourier integrals of form factors are approximated in very restrictive kinematics (static target) to
three-dimensional densities, transverse densities as defined in Eq.(1.1) are boost invariant and quan-
tify accordingly charge and current distributions within the nucleon in impactparameter space.
They decompose the electromagnetic current density matrix in spin-independent (ρ1) and spin de-

pendent
(

ρ̃2 ≡ 1
2MN

∂ρ2
∂b

)
terms, with the former being the transverse density associated to Dirac’s

form factor, and the latter computed from the transverse density of Pauli’sform factor. It can be
stated that this decomposition permits a mechanical interpretation of the nucleon as a classical
pion-nucleon system, but one in which the pion is relativistic. One arrives tothis result after cal-
culatingρ1 andρ̃2 using either an axial-vector or pseudo-scalar pion-nucleon couplings and noting
that for both choices one finds thatρ1 < ρ̃2. We present both approaches below an also emphasize
the extend of their numerical agreement and comment on the origin of their discrepancy. We also
extend this methodology into calculating transverse densities associated to the form factors of the
energy momentum tensor from which we define a transverse density of orbital angular momentum
and compute it in the chiral region.

2. Spectral functions and parametric regions fromχEFT

Figure 1: Leading chiral contributions to the isovector nucleon formfactor. a) Diagram with intermediate
nucleon (baryon). b) Contact term diagram.

The dynamics in the nucleonic periphery is governed by chiral effectivefield theoryχEFT in
which pions (π), and nucleons (ψ) constitute the fundamental degrees of freedom. Starting from a
generalχEFT Lagrangian (see e.g., [2], and keeping the leading terms in powers ofthe pion field,
one works with the interaction Lagrangian,

LπN = −gA

Fπ
ψ̄γµγ5τaψ∂µπa − 1

4F2
π

ψ̄γµτaψεabcπb∂µπc (2.1)

which provides axial-vector and contact term interactions in the pionic contribution to the nucleon’s
electromagnetic current. The leading diagrams are shown in Fig.(2). Diagram a) can be decom-
posed into a propagating term and a contact term which combined with diagramb) results in a
total contact term contribution proportional to 1− gA. This contribution is absent for the Pauli
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form factor hence it also does not contribute toρ2, while it amounts to less than 10% of the total
contribution toρ1. Through the dispersion integral,

ρ(b) =
∫ ∞

4M2
π

dt
2π

K0(
√

tb)
ImF(t + i0)

π
, (2.2)

transverse densities are calculated using the imaginary part of the form factors which are obtained
by using Cutkosky rules on the two pion cut of the diagrams in Fig.2 [3][4]. The modified Bessel
functionsK0(

√
tb) in Eq.(2.2) behave asymptotically ase−2

√
tb√

tb
, effectively parameterizing inb dif-

ferent kinematic regions of the nucleons large distance structure.
Throughb, transverse densities filter out the dynamics associated with high momentum modes

(
√

t > 1
b ) which combined with the analytic structure of the form factors within the particleex-

change picture permits one to identify the above mentioned parametric regions.For the particular
case of the two pion exchange contribution to the isovector form factors, one can identify a molecu-
lar region atb ∼ O(M2

N/M3
π) [4], dominated by a subthreshold singularity (tsub = 4M2

π −M4
π/M2

N);
an endpoint singularity in the pion nucleon scattering amplitude which shows upin the analytic
structure of the form factor and limits the convergence of kinematic series near threshold [2].

Another parametric region is identified atb ∼ O(1/Mπ) (chiral region). Momentum modes
with t −4M2

π ∼ O(M2
π) contribute the most to the transverse densities in this region. In a partonic

picture of the nucleon, this region will be populated by pions with characteristic momenta of order
Mπ . A heavy baryon expansion was developed for this region for both form factors which allowed
approximating the corresponding transverse densities to analytic expansions in (Mπ/MN) and that
resulted in good agreement with the densities computed through numerical integration. When
compared with each other, the leading components of each expansion, forρ1 and ρ̃2, are at a
ratio 1:(O(Mπ/MN) respectively. This ratio will be connected through the light cone formulation
addressed in the following section to a mechanical picture of a pion-nucleonsystem with total
quantum numbers corresponding to a nucleon.

Lastly, it should be noted that from phenomenological studies the two pion contribution to the
nucleon’s isovector form factor quantified usingχEFT as described above becomes only dominant
in the regionb > 2 f m[3] . For smaller distances, the isovector form factor is mostly contributed by
heavier non-chiral exchange mechanisms that fall rapidly in the chiral region.

3. Light cone wave functions andπ-parton distributions

To leading order in pion fields, most of the contribution of the pion current comes from the
propagating part of the diagram in Fig.(2a). This propagating part is the only contribution if one
starts the derivation with aπN pseudo scalar coupling, and is also the only term in a light cone
time-ordered decomposition that can be cast in terms of an overlap of wave-functions of aπN
system. Other terms vanish in the∆+ = 0 reference frame.

While the light cone electromagnetic current and the electromagnetic form factors of the nu-
cleon are given as overlap of LCWFs in relative transverse momentumk⊥, the corresponding trans-
verse densities can be written as y-integrals of local products of LCWFs intransverse position
[1][8].

ρ1(b) =
∫

dy
2π

[
1

(1− y)2

(
Ψ†

N(y,~b
′)ΨN(y,~b′)

)
λ=λ ′=+

+(1−gA)δ (y)C.T.

]
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ρ̃2(b) = 2
∫

dy
2π

1
(1− y)2

(
Ψ†

N(y,~b
′)ΨN(y,~b′)

)
λ=−λ ′=−

, (3.1)

in which b′ = b/(1− y), y is the light cone momentum fraction ofπN system carried by the pion
andλ andλ ′ are the total spin of the system and the spin of the nucleon(baryon) respectively.

The contact term (C.T.) in Eq.(3.1) appears if one uses a pion-nucleon interaction with ax-
ial coupling, which is the case when this is derived from a chiral symmetric Lagrangian such as
Eq.(2.1). This term is interpreted as non-partonic contributions to the nucleon current, and thus
lives in they → 0 region of what will be defined bellow as chiral parton distributions. It has also
been noted that the contact term masks contributions from heavier baryoncomponents to the nu-
cleon wave function, and that if all these components were taken into account, the delta function of
such contact term will be replaced by a broader distribution [3] that can inturn be absorbed in the
wave function terms of the above equation.

In the case of the pion current contribution to the electromagnetic iso-vectortransverse den-
sities, the LCWFs in the above equations are written for a pion-baryon system with the intrinsic
quantum numbers of the nucleon. These wave functions are eigenstates of an interaction Hamilto-
nian with pseudo-scalar pion-nucleon coupling. To leading order, the transverse densities derived
from these wave functions through Eq.(3.1) can be written in terms of the real scalar functions [5]
ψ0(1)(y,r⊥)∼ K0(1)(M̃(y)r⊥):

ρ1(b) =
∫

dy
2π

1
(1− y)2

(
ψ2

0(y,b
′)+ψ2

1(y,b
′)
)

ρ̃2(b) = 2
∫

dy
2π

1
(1− y)2ψ0(y,b

′)ψ1(y,b
′). (3.2)

From Eq.(3.2), one can see thatρ1 ≥ ρ̃2 and that the light-cone current is positive definite.
Furthermore, in the chiral parametric region, through a heavy baryon expansion, one can show that
ρ̃2
ρ1

∼ O(1) [5][4]. Classically, this ratio corresponds to the velocity of charge carriers in a con-
tinuous current flux. In a simple mechanical picture of a weakly interacting pion-nucleon system,
the lowest allowed orbital angular momentum component that contributes to 1/2 as the total an-
gular momentum is l=1, which for a relative distance that falls within the chiral region (∼ M−1

π )
corresponds to a pion moving nearly at the speed of light relative to the center of mass of the pion
nucleon system. Hence, its momentum is relativistic(∼ Mπ ).

The connection to a mechanical model described above is thus implicit in the light-cone
description of the pion-nucleon component of the nucleon Fock wave function expansion which
gives the proper meaning to densities in the classical quantum mechanical sense as it is shown in
Eqs.(3.1). Having identified pions in the nucleon’s chiral region as quasi-free particles, is natural
to recognize the integrands of Eqs.(3.1) as parton distributions of pions, e.g., f π

1 and f π
2 ,

f π
1 (y) =

1
2π

1
(1− y)2

(
Ψ†

N(y,~b
′)ΨN(y,~b′)

)
λ=λ ′=+

+(1−gA)δ (y)C.T.

f π
2 (y) = 2

1
2π

1
(1− y)2

(
Ψ†

N(y,~b
′)ΨN(y,~b′)

)
λ=−λ ′=−

(3.3)

which are therefore computed in the periphery in a model independent manner through leading
diagrams inχPT 1. Results are plotted in Fig.(2).

1See e.g., Ref. [6] in which these distributions are computed from the operator definitions of GPDs.
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Figure 2: Distribution of parton-like
pions in the chiral periphery of the
nucleon. The bold vertical line indi-
catesy= Mπ

MN
, highlighting that this re-

gion is dominated by pions withy ∼
O
(

Mπ
MN

)
. This trend shifts towards

smaller values ofy as the distribution
is sample in largerb regions.

4. EMT transverse densities and orbital angular momentum

One can further develop a quantifiable partonic description of the nucleon’s structure at trans-
verse distances of chiral order which can provide the parametric contribution from peripheral pions
to the nucleon’s intrinsic physical properties such as mass and spin. These properties are commonly
related to the nucleon’s compositness or internal structure through the form factors that decompose
covariantly the matrix elements of the energy momentum tensor and as it is the casefor the electro-
magnetic form factors, they are functions of the square of the four-momentum difference between
initial and final state,

〈N′|Θµν |N〉= û(p′)

[
P(µ γ ν)A(∆2)+

P(µ σ ν)αqα

2MN
B(∆2)+ ...

]
u(p). (4.1)

Of particular interest is the proton’s spin which is given by form factorsA andB through,

JN =
1
2
(A(0)+B(0)), (4.2)

From a proposed form factor associated with orbital angular momentum operator and that satisfies
Eq.(4.2) [7], one can then find a transverse density of angular momentum inimpact parameter
space through transverse densities associated with form factorsA andB [8].

ρJ(b) =
1
3

[
(ρA(b)+ρB(b))−b

∂
∂b

(ρA(b)+ρB(b))

]
(4.3)

Thus providing an additional tool in phenomenological studies for exploringthe origin of the nu-
cleon’s spin.

Analogously to the case of transverse densities from electromagnetic formfactors,ρA andρB

have been computed from the spectral functions or imaginary parts of form factorsA andB through
Eq.(2.2). These spectral functions in turn, are calculated using aχPT expansion of Eq.(4.1) [8]. To
leading order in powers of the pion fields, only a diagram such as Fig.(2a)contributes while contact
terms are absent from form factorsA andB. Just as for the spectral functions of electromagnetic
form factors, those forA andB posses a rich analytic structure which is also sampled or param-
eterized by the corresponding transverse densities within the same parametric regions discussed
above.Thus, because the diagram studied from which both electromagneticand energy momentum
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Figure 3: Scaled transverse densi-
ties from EMT form factors and of
orbital angular momentum in the nu-
cleon’s chiral region. (Continuous)
ρA,(dot-dashed)ρB,(dotted)−b ∂

∂b ρA,

(dashed)−b ∂
∂b ρA and (bold)ρJ .

tensor are computed factors in the sameπN scattering amplitude, forA andB one finds a threshold
singularity at the same position as forF1 andF2. Again, just as the light-cone current is decom-
posed in spin independentρ1 and spin-dependent̃ρ2 transverse densities, the ++ component of
matrix elements of the energy momentum tensor are likewise decomposed in spin-independentρA

and spin-dependentρ̃B transverse densities that can also be written as local products ofπN LCWFs,

ρA(b) =
3
2

∫
y

(1− y)2

(
Ψ†

N(y,~b
′)ΨN(y,~b′)

)
λ=λ ′=+

ρ̃B(b) = 3
∫

dy
2π

y
(1− y)2

(
Ψ†

N(y,~b
′)ΨN(y,~b′)

)
λ=−λ ′=−

, (4.4)

which as expected are proportional to moments of the parton distributions associated withρ1 and
ρ̃2 (see Eq.(3.3)). The computed densities are plotted in Fig. (3) which shows clearly thatρJ is
dominated by−b ∂

∂b ρB in the chiral region.
It is also worth pointing that there is no contact term contributions toρA or ρB using either ax-

ial vector or pseudoscalar coupling, thus both choices result in the same transverse densities. This
is clear if one just calculate the second moments iny of the parton distributions given in Eq.(3.3).
Contact terms of ordergA may be present in other form factors decomposing EMT (columns in
Eq.(4.1)). Understanding their origin an a physical interpretation in studiesof the nucleons periph-
eral structure are under way and may shed light into effectively quantifying the composite nature
of the nucleon.
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