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Our understanding of transverse momentum dependent observables has strongly improved re-
cently with the achievement of the proper definition for the relevant hadronic quantities involved,
i.e. the transverse momentum dependent functions (TMDs) [1, 2, 3]. These appear both in the
initial state, as TMD parton distribution functions (TMDPDFs), and in the final state, as TMD
fragmentation functions (TMDFFs). In the qT -spectrum of semi-inclusive deep-inelastis scattering
(SIDIS) or Drell-Yan (DY) processes, different TMDs contribute, at leading-twist, to the factoriza-
tion of the QCD hadronic tensor depending on the polarization of the involved hadrons/partons. In
order to study the hadronic spin structure one needs to properly define all these functions, which at
leading twist there are sixteen of them, eight TMDPDFs and eight TMDFFs. Their evolution turns
out to be driven by a universal evolution kernel, which allows us to resum the large logarithms at
next-to-next-to-leading-logarithmic (NNLL) accuracy, given the current knowledge of the relevant
perturbative ingredients. The universal evolution kernel is a key ingredient in the interpretation of
experimental data and the phenomenological extraction of TMDs.

Let us consider here the case of semi inclusive deep inelastic scattering [3, 4]:

l(k)+N(P)→ l′(k′)+h(Ph)+X(PX) , (1)

where l(l′) is the incoming (outgoing) lepton, N is the nucleon and h is the detected hadron, for
which we measure its transverse momentum. This process is commonly described in terms of the
following Lorentz invariants,

xB =
Q2

2P ·q
, y =

P ·q
P · l

, zh =
P ·Ph

P ·q
. (2)

The photon carries momentum q = k−k′ with q2 =−Q2. In the Breit frame, the incoming nucleon
N is traveling along the +z-direction, with n-collinear momentum P, and the photon is n-collinear,
traveling along the −z-direction 1. The outgoing hadron h has a momentum Ph mainly along the
−z-direction, acquiring a transverse momentum Ph⊥. The axial four-spin vectors of the nucleon
and the hadron, S and Sh respectively, satisfy S2 = S2

h =−1 and S ·P = Sh ·Ph = 0. The differential
cross section for SIDIS under one photon exchange can then be written as

d5σ
dxB dydzh d2Ph⊥

=
πα2

em

2Q4 yLµνW µν . (3)

The leptonic tensor Lµν is Lµν = 2
(
kµk′ν + kνk′µ −gµνk · k′

)
+ 2iλlεµνρσ lρqσ , where we have

summed over the spin of the final lepton, sl′ . The hadronic tensor W µν is given by

W µν =
1

(2π)4
1
z ∑

X

∫ d3PX

(2π)32EX
(2π)4δ (4)(P+q−Ph −PX)⟨PS|Jµ†(0) |X ;PhSh⟩⟨X ;PhSh|Jν(0) |PS⟩

=
1
z ∑

X

∫ ∫ d4r
(2π)4 eiq·r ⟨PS|Jµ†(r) |X ;PhSh⟩⟨X ;PhSh|Jν(0) |PS⟩ , (4)

where the sum over the undetected hadrons in the final state, X , includes as well the integration
over PX . The factorization of the cross section can be stated only when the photon energy probe is

1A generic vector vµ is decomposed as vµ = n · v nµ

2 +n · v nµ

2 + vµ
⊥ = (n · v,n · v,vµ

⊥) = (v+,v−,vµ
⊥), with n, n such

that n2 = n2 = 0 and n ·n = 2 and vT othogonal to n, n (the usual choice being n = (1,0,0,1), n = (1,0,0,−1)), We also
use vT = |v⊥|, so that v2

⊥ =−v2
T .
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much bigger than the hadronization scale (ΛQCD ∼ 1 GeV) and/or the observed transverse momenta
Q2 ≫ max(ΛQCD,qT ). The first step of factorization of the SIDIS hadronic tensor is done by
matching the full QCD current 2 onto the effective theory (SCET) counterpart

Jµ
QCD = ∑

q
eqψ̄γµψ −→ Jµ

SCET =C(Q2/µ2)∑
q

eqξ̄nW̃ T
n S̃T †

n γµST
n W̃ T †

n ξn , (5)

which contains soft and collinear modes. The Wilson coefficient C(Q2/µ2) can be extracted from
the finite terms of the calculation of the (full QCD) quark form factor in pure dimensional regu-
larization, and it is known up to O(α2

s ) [5]. One of the key ingredients of the SCET machinery
is the decoupling of the Hilbert space of the partonic states into three subspaces corresponding to
n-collinear, n-collinear and soft modes. After this decoupling, standard manipulations lead to the
following form of the hadronic tensor

W µν = H(Q2/µ2)
1

Nc
∑
q

eq

∫ d4r
(2π)4 eiq·r Tr

[
Φ(0)(r;P,S)γµ ∆(0)(r;Ph,Sh)γν ]S(r)+O

(
qT

Q

)
, (6)

where H(Q2/µ2) = |C(Q2/µ2)|2 and

Φ(0)
i j (r;P,S) = ⟨PS|

[
ξ̄n jW̃ T

n
]
(r)

[
W̃ T †

n ξni
]
(0) |PS⟩

∣∣
zb subtracted ,

∆(0)
i j (r;Ph,Sh) =

1
z ∑

X

∫
⟨0|

[
W̃ T †

n ξni

]
(r) |X ;PhSh⟩ ⟨X ;PhSh|

[
ξ̄nW̃ T

n j
]
(0) |0⟩

∣∣
zb subtracted ,

S(r) =
1

Nc
⟨0|Tr

[
ST †

n S̃T
n
]
(r)

[
S̃T †

n ST
n

]
(0) |0⟩ . (7)

The “zb-subtracted” stands for zero-bin subtraction which means that one needs to subtract the soft
momentum modes contributions from the naively calculated collinear matrix elements, thereby
obtaining the so-called “pure collinear” matrix elements.

Since the incoming and outgoing quarks are n-collinear and n-collinear, respectively, the vir-
tual photon momentum is hard, q = kn − kn ∼ Q(1,1,λ ), and thus in the exponential in Eq. (6) we
have r ∼ (1/Q)(1,1,1/λ ). Then, we need to Taylor expand the previous result and consider only
the leading order contributions in λ . Thus we get

W µν = H(Q2/µ2)
2

Nc
∑
q

eq

∫
d2kn⊥d2kn⊥d2ks⊥δ (2)(q⊥+ kn⊥− kn⊥+ ks⊥)

×Tr
[
Φ(0)(x,kn⊥,S)γµ ∆(0)(z,kn⊥,Sh)γν ]S(ks⊥) , (8)

where

Φ(0)
i j (x,kn⊥,S) =

1
2

∫ dy−d2y⊥
(2π)3 e−i( 1

2 y−k+n −y⊥·kn⊥) ⟨PS|
[
ξ̄n jW̃ T

n
]
(0+,y−,y⊥)

[
W̃ T †

n ξni
]
(0) |PS⟩

∣∣
zb subtracted ,

∆(0)
i j (z, P̂h⊥,Sh) =

1
2

∫ dy+d2y⊥
(2π)3 ei( 1

2 y+k−n −y⊥·kn⊥)

× 1
z ∑

X

∫
⟨0|

[
W̃ T †

n ξni

]
(y+,0−,y⊥) |X ;PhSh⟩ ⟨X ;PhSh|

[
ξ̄nW̃ T

n j
]
(0) |0⟩

∣∣
zb subtracted ,

S(ks⊥) =
∫ d2y⊥

(2π)2 eiy⊥·ks⊥
1

Nc
⟨0|Tr

[
ST †

n S̃T
n
]
(0+,0−,y⊥)

[
S̃T †

n ST
n

]
(0) |0⟩ . (9)

2We consider the case of a one photon exchange. The extension to W and Z bosons exchange is straightforward.
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For the Φ correlator we have k+n = xP+, while for the ∆ correlator we have k−n = P̂−
h /z and kn⊥ =

−P̂h⊥/z. P̂h⊥ can be interpreted as the transverse momentum of the outgoing hadron h in a frame
where the fragmenting quark has no transverse momentum.

When calculated perturbatively (i.e. partonically) the three matrix elements above contain, in-
dividually, rapidity divergences and hence neither one of them is well-defined. In order to properly
define the TMDPDFs and TMDFFs, the soft function is split into two pieces in rapidity space, as
was shown in Ref. [2],

S̃(bT ;
Q2µ2

∆+∆− ,µ2) = S̃−
(
bT ;ζF ,µ2;∆−) S̃+

(
bT ;ζD,µ2;∆+

)
,

S̃−
(
bT ;ζF ,µ2;∆−)=√

S̃
(

∆−

p+
,α

∆−

p̄−

)
, S̃+

(
bT ;ζD,µ2;∆+

)
=

√
S̃
(

1
α

∆+

p+
,
∆+

p̄−

)
, (10)

where in the soft functions under the square roots we have explicitly specified the dependence
on the ∆-regulator parameters that regulate the soft Wilson lines in the n- and n-directions. ζF

and ζD are fractions of Q2 satisfying ζFζD = Q4, where ζF = Q2/α and ζD = αQ2 with α an
arbitrary boost-invariant real number (one can call it the "soft splitting number"). p+ and p− stand
for the two large collinear momentum components carried by the incoming and outgoing partons,
respectively, that initiate the DIS hard reaction. The superscript ∼ refers to quantities calculated
in impact parameter space (IPS). We emphasize the fact that, as was mentioned in Ref. [2], the
splitting of the soft function in rapidity space does not depend on a particular regulator.

In order to properly define the TMDs, the two pieces of the soft function presented above are
combined with the two quark correlators (Φ and ∆). The resulting quantities are free from rapidity
divergences and hence can be considered as a valid hadronic quantities. Thus, the TMDPDFs are
defined by

Fi j(x,kn⊥,S;ζF ,µ2;∆−) =

∫
d2b⊥ eib⊥·kn⊥ Φ̃(0)

i j (x,b⊥,S; µ2;∆−) S̃−(bT ;ζF ,µ2;∆−) , (11)

while for the TMDFFs we have

Di j(z, P̂h⊥,Sh;ζD,µ2;∆+) =

∫
d2b⊥ e−ib⊥·kn⊥ ∆̃(0)

i j (z,b⊥,Sh; µ2;∆+) S̃+(bT ;ζD,µ2;∆+) . (12)

With the definitions above we can write the hadronic tensor as

W µν = H(Q2/µ2)
2

Nc
∑
q

eq

∫
d2kn⊥d2kn⊥δ (2)(q⊥+ kn⊥− kn⊥)

×Tr
[
F(x,kn⊥,S;ζF ,µ2)γµ D(z, P̂h⊥,Sh;ζD,µ2)γν] . (13)

The evolution of the different TMDs is governed through their anomalous dimensions which
are defined as follows

d
dlnµ

lnF̃f/N(x,zb⊥,S;ζF ,µ2)≡ γF

(
αs(µ), ln

ζF

µ2

)
,

d
dlnµ

lnD̃h/ f (z,b⊥,Sh;ζD,µ2)≡ γD

(
αs(µ), ln

ζD

µ2

)
. (14)
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Notice that the evolution of the TMDs with respect to the factorization scale µ is related to that
of the hard part, H. Since the hadronic tensor does not depend on the factorization scale, the
anomalous dimensions γF and γD and the one of the hard part, γH are connected by

γH =
d

dlnµ
H(Q2/µ2) =−γF

(
αs(µ), ln

ζF

µ2

)
− γD

(
αs(µ), ln

ζD

µ2

)
, (15)

and thus

γF

(
αs(µ), ln

ζF

µ2

)
=−Γcusp(αs(µ))ln

ζF

µ2 − γV (αs(µ)) ,

γD

(
αs(µ), ln

ζD

µ2

)
=−Γcusp(αs(µ))ln

ζD

µ2 − γV (αs(µ)) . (16)

It should be mentioned that the splitting of γH into γF and γD given in the last equation is unique
following the restriction of ζFζD = Q4. The coefficients of the perturbative expansions of Γcusp and
γV are known up to three loops and they are collected in [6].

On the other hand, the TMDs depend as well on Q2 through the variables ζF and ζD. This can
be easily verified, e.g., by considering the NLO results for the unpolarized TMDPDF (see Eq. (21)
in Ref. [2]) or for the unpolarized TMDFF. We next discuss the evolution of all TMDs with respect
to Q2, or equivalently ζF and ζD.

The starting point is Eqs. (11)-(12). In IPS where the convolution becomes a simple product,
one has the following:

lnFi j(x,b⊥,S;ζF ,µ2;∆−) = lnΦ̃(0)
i j (x,b⊥,S; µ2;∆−)+ lnS̃−(bT ;ζF ,µ2;∆−)

lnDi j(z,b⊥,Sh;ζD,µ2;∆+) = ln∆̃(0)
i j (z,b⊥,Sh; µ2;∆+)+ lnS̃+(bT ;ζD,µ2;∆+) . (17)

We notice that the ζ -dependence in Eqs. (17) lies completely in the soft factors, while the pure
collinear contributions (Φ̃(0) and ∆̃(0)) are free from any ζ -dependence. This observation is im-
portant. Each pure collinear contribution depends solely on one collinear sector: n-collinear for
the TMDPDFs and n-collinear for the TMDFFs3. As such, it is impossible to generate any Q2-
dependence in those quantities since the only way that the Q2 can appear (either in the collinear or
the soft factors) is through the (boost invariant) combination of p+p− = Q2 (here we are assuming
that we are in the Breit frame). On the other hand the soft gluon radiation has no preferred collinear
direction (both light-cone momentum components have the same scaling) and the soft factors do
include Q2-dependence through a term of the form log(∆+∆−/Q2µ2) (see Eq. (18) in Ref. [2]).
Moreover, in Ref. [2], where we considered the DY kinematics, it was shown that to all orders in
perturbation theory, lnS̃ has a single logarithmic dependence on ln(∆+∆−/Q2µ2), so that one can
write

lnS̃± =
1
2
Rs(bT ,αs)+D(bT ,αs)ln

(
(∆±)2

ζF µ2

)
, (18)

3This is not the case for the naive collinear contributions, since such quantities involve soft contamination in each
of them. This soft contamination “connects” the two collinear sectors and thus a non-valid Q2-dependence appears in
the collinear contributions to both the TMDPDFs and the TMDFFs. Thus avoiding double counting is crucial.
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where, as already mentioned before, ζF = Q2/α and ζD = αQ2 with α the arbitrary boost-invariant
soft splitting number.

The soft function results to be Hermitian and contains a single logarithm of Q2 to all orders in
perturbation theory. Then, when going from time-like kinematics (DY) to space-like ones (DIS),
it turns out to be universal. Thus the arguments of Ref. [2] for the splitting of the soft function
carry over straightforwardly to SIDIS kinematics. Combining this observation with Eqs. (17), we
get that the Q2-dependence of the TMDPDFs and TMDFFs is governed by the same function:

d
dlnζF

lnF̃f/N(x,zb⊥,S;ζF ,µ2) =−D(bT ; µ2);
d

dlnζD
lnD̃h/ f (z,b⊥,Sh;ζD,µ2) =−D(bT ; µ2) .

(19)

Then given Eqs. (14-15-16) and the µ-independence of the hadronic tensor we have at all orders

dD
dlnµ

= Γcusp . (20)

The universal D function has a valid perturbative expansion only for low values of b⊥. For
large b⊥ one needs to parameterize it and extract it from experiment, although current data do not
seem to be precise enough for this purpose, as it is shown in Ref. [7]. We notice that the D-function
and the anomalous dimension are not the only universal pieces of the TMD as noted in Ref. [7]
(we refer to the Q-independent terms called hΓ,γ in that reference). In that work the universal
properties of TMDs derived in Ref. [4] are exploited in order to constrain their non-perturbative
inputs, obtaining a very precise determination.
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