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We present detailed chemical evolution models for the MilkyWay and M31 in presence of radial

gas flows. These models follow in detail the evolution of several chemical elements (H, He, CNO,

α elements, Fe-peak elements) in space and time. The contribution of supernovae of different type

to chemical enrichment is taken into account. We find that an inside-out formation of the disks

coupled with radial gas inflows of variable speed can reproduce very well the observed abundance

gradients in both galaxies. We also discuss the effects of other parameters, such as a threshold

in the gas density for star formation and efficiency of star formation varying with galactic radius.

Moreover, for the first time we compute the galactic habitable zone in our Galaxy and M31 in

presence of radial gas flows. The main effect is to enhance thenumber of stars hosting a habitable

planet with respect to the models without radial flow, in the region of maximum probability for

this occurrence. In the Milky Way the maximum number of starshosting habitable planets is at

8 kpc from the Galactic center, and the model with radial gas flows predicts a number of planets

which is 38% larger than that predicted by the classical model.
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Figure 1: Left panel: Oxygen gradient in the Milky Way. The dotted line represents model of Mott et al.
(2013) with radial gas flows (model MW-R in Table 1). The modelis compared with the data from Cepheids
of Luck & Lambert (2011). Right panel: Oxygen gradient in M31. The dotted line represents a model
without radial gas flows and no threshold in the gas (model M31-N in Table 1), whereas the dashed line
represents the best model with gas flows and no threshold (model M31-R in Table 1), We also report the
best model M31-B for a “static” model without radial as flow but in presence of threshold. The results are
compared with the data from HII regions and supernova remnants (see Spitoni et al. 2013 for references).

1. Introduction

The majority of chemical evolution models assumes that galactic disks form by means of infall
of gas and divides the disk into several independent rings. However,if the infall is important then
radial gas flows should be taken into account as a dynamical consequence of infall. The infalling
gas has a lower angular momentum than the circular motions in the disk, and mixing with the gas
in the disk induces a net radial inflow (Lacey & Fall 1985). In this contribution we will discuss
the effects of radial gas flow on the chemical evolution of the Milky and M31,and on the galactic
habitable zone of those galactic systems.

2. The oxygen abundance gradients for the Milky Way and M31 in presence of
radial gas flows

In Fig. 1 we show our results for the abundance gradient for oxygen inpresence of radial gas
flows of the Milky Way and M31, respectively. In the left panel we show the best model of Mott at
al. (2013) for the Milky Way compared with the data from Cepheids. For M31the best model of
Spitoni et al. (2013) is compared with data from supernova remnants, andHII regions (see Spitoni
et al. for references). For both models we found that an inside-out formation of the disk, with
no threshold in the surface gas density for the star formation rate (SFR) coupled with radial gas
inflows of variable speed (in the left panel of Fig. 2 we show the radial gas inflow velocities for the
Milky Way and M31) can reproduce very well the observed abundancegradients.

In Table 1 we report the properties of the best models for Milky Way model (MW-R) and the
one for M31 (M31-R) in presence of radial flows. In the same Table all the models considered
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Table 1: The list of the models described in this work.

Model Threshold [M⊙ pc−2] τd (I-O) [Gyr] SFEν [Gyr−1] Radial inflow

M31-R / 0.62 R (kpc) +1.62 Gyr 2 velocity pattern Fig. 2
M31-N / 0.62 R (kpc) +1.62 Gyr 2 /
M31-B 5 0.62 R (kpc) +1.62 Gyr 2 /
MW-R / 1.033 R (kpc) -1.27 Gyr 1 velocity pattern Fig. 2
MW-A 7 (Thin Disk) 1.033 R (kpc) -1.27 Gyr 1 /

4 (Halo-Thick Disk)
MW-B 7 (Thin Disk) 1.033 R (kpc) -1.27 Gyr ν(R) ∝ R−1 /

4 (Halo-Thick Disk)
MW-C / 1.033 R (kpc) -1.27 Gyr 1 /
MW-D 7 (Thin Disk) 3 Gyr 1 /

4 (Halo-Thick Disk)

in this work are reported. If a threshold in the gas density is assumed its values is shown in the
second column, expressed inM⊙pc−2. In column 3, the inside-out scenario is expressed by a linear
variation of the time-scale of infallτD(R), and if this assumption is absent, the time-scale is set to
be constant. In column 4 the different prescriptions for the SFEν are reported. In the last column
the presence of radial gas flows is indicated.

For the Milky Way we also discuss the formation and the temporal evolution of theabundance
gradient for the oxygen. Recently, Cresci et al. (2010) measured oxygen abundances across three
star-forming galaxies at redshift z = 3. The most striking result of this study is the existence of a
positive gradient in the oxygen abundance. In other words the O abundance in the inner disks of
these galaxies seems to decrease towards the galactic center. In the right panel of Fig, 2 we show
the temporal evolution for our best model in presence of radial gas inflows (model MW-R). In
accordance with results of Cresci et al. (2010) (z=3 correspondingto a cosmic time of 2 Gyr from
the Big Bang) our model shows an increase of metallicity from the outer regions up to 8 kpc where
it reaches a peak and then a decrease for R < 8 kpc towards the Galactic centre. Our explanation
for the gradient inversion in the Milky Way is based on the inside-out disc formation: (i) at early
epoch (z = 3) the efficiency of chemical enrichment (i.e. of the SFR) in the inner regions is high
but the rate of infalling primordial gas is dominating, thus diluting the gas more in theinner than
in the outer regions; (ii) as time passes by, the infall of pristine gas in the innerparts decreases and
the chemical enrichment takes over; (iii) then, at later epochs, the SFR in theinner regions is still
much higher than in the outer parts of the disc where the gas density is very low, but the infall is
lower and the abundance gradients become negative also in the inner regions.

3. The effects of several parameters on the abundance gradient of the Milky Way in
absence of radial flows

In Fig. 3 we show our results for the present day oxygen gradient in theMilky Way showing
the effects of different parameters on models without radial gas flows, compared with the data from
Cepheids. We examine the following parameters: inside-out formation, threshold in gas density for
the SFR, and the star formation efficiency (SFE). The model with inside-outformation, threshold
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Figure 2: Left panel: velocity pattern for the radial inflows of gas for the Milky Way model MW-R (dashed
line) and for the M31 model one M31-R (solid line) (The properties of those models are reported in Table 1).
Right panel: Evolution with redshift of the abundance gradients for thebest model MW-R for the oxygen.
The evolution is studied by computing the abundance gradients for the redshifts z=3.25, 2.23, 1.65, 0.98 and
0.0 whose correspond to the times t=2, 3, 4, 6 and 14 Gyr after the Big Bang (in aΛCDM cosmology).

and constant SFE (model MW-A) well reproduce the abundance gradient up to 14 kpc. If instead,
we do not assume an inside-out formation for the thin disk, and keep constant the timescale of
infall τD , the present day abundance gradients provided by the model are too flat in the inner part
of the disk even if a threshold in the gas density is assumed (model MW-D in Table 1). In fact,
the threshold influences mostly the outer gradient. The model with inside out formation but no
threshold (model MW-C in Table 1) shows an abundance gradient too flatbetween 6-12 kpc and in
the outer parts of the disk it even increases, clearly at variance with the observational data. This is
in agreement with what found in Chiappini et al. (2001). Thus, we can conclude that a threshold
in the gas density seems to be necessary to have the right trend of the gradients in the outer parts
of the disk in a model without radial gas flows. The model MW-B in Table 1 which assumes a
variable SFE, a threshold, and inside-out formation, provides a good fitto the observed present
day abundance gradients from 4 to 14 kpc in the Milky Way. However, beyond this distance the
gradient predicted by the models is too flat and inconsistent with the observations.

4. The galactic habitable zone of the Milky Way and M31

The galactic habitable zone (GHZ) is defined as the region with sufficiently high metallicity
to form planetary systems in which Earth-like planets could be found and mightbe capable of sus-
taining life. We have assumed that the probability of forming habitable Earth-likeplanets depends
on the [Fe/H] (following the prescriptions of Prantzos 2008), the SFR andthe supernova rate of
the studied region. We definePGHZ(R, t) as the fraction of all stars having Earths (but no gas giant
planets) which survived supernova explosions as a function of the galactic radius and time:

P(R, t) =

∫ t
0 SFR(R, t ′)PE(R, t ′)PSN(R, t ′)dt′

∫ t
0 SFR(R, t ′)dt′

. (4.1)

4



P
o
S
(
N
I
C
 
X
I
I
I
)
0
3
1

The Milky Way and M31 Emanuele Spitoni

Figure 3: Effects on the oxygen abundance gradients of several parameters that characterize the chemical
evolution in absence of radial flows. The blue short dashed line is the model MW-C (see Table 1) without
threshold, with inside out formation. The model MW-D characterized by the absence of inside-out is in-
dicated by the light-blue long dashed line. The model MW-B with variable SFE, inside out formation and
threshold is represented by the brown dashed line). The black dotted line represents the model MW-A with
inside-out, threshold, and constant SFE. The data are from Luck & Lambert (2011).

This quantity should be interpreted as the relative probability to have complex life around one star
at a given position, as suggested by Prantzos (2008). In eq. (4.1),PSN(R, t ′) is the probability of
surviving to SN explosion, andPE(R, t ′) is the probability of having stars with Earth-like planets
but not gas giant planets which destroy the Earth-like planets. Finally, we define the total number
of stars formed at a certain timet and galactocentric distanceR hosting Earth-like planet with life
asN⋆ li f e(R, t) = PGHZ(R, t)×N⋆tot(R, t), whereN⋆tot(R, t) is the total number of stars created up to
time t at the galactocentric distanceR.

In Fig. 4 we show theN⋆ li f e(R, t) values as a function of the Galactocentric distance and the
Galactic time for models without radial gas flows for the Milky Way (MW-A) and M31 (M31-B).
We compare those results with the GHZ obtained including radial gas flows: theMW-R model for
the Milky Way and the model M31-R for M31 (see Table 1).

For both the Milky Way and Andromeda, the main effect of the gas radial inflows is to enhance
the number of stars hosting a habitable planet with respect to the “classical” model results, in the
region of maximum probability for this occurrence. This is due to the increaseof gas toward inner
region because of radial inflows, which leads to larger SFR values. We also recall that models
with radial gas inflows have no threshold in the star formation. All results areobtained by taking
into account the supernova destruction processes. In particular, we find that in the Milky Way the
maximum number of stars hosting habitable planets is at 8 kpc from the Galactic center, and the
model with radial flows predicts a number which is 38% larger than what predicted by the classical
model. For Andromeda we find that the maximum number of stars with habitable planets is at 16
kpc from the center and that in the case of radial flows this number is largerby 10% relative to the
stars predicted by the classical model.
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Figure 4: The total number of stars having Earths (N⋆li f e) as a function of galactocentric distance and galac-
tic time for the Milky Way (Upper panels) and for M31 (Lower panels). The (N⋆li f e) values are computed
within concentric rings, 2 kpc wide.Left panels:classical model results without radial gas flows are shown
using the MW-A model for the Milky Way and the model M31-B for M31 (see Table 1).Right panels:
model results with radial gas flows are reported adopting theMW-R model for the Milky Way and the model
M31-R for M31 (see Table 1).
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