
P
o
S
(
N
I
C
 
X
I
I
I
)
0
6
6

Large-scale Gogny-HFB Calculation for r-Process
Nucleosynthesis: Towards a fully-converged
microscopic mass table

Alexander Arzhanov∗ab, Tomás R. Rodríguezac, and Gabriel Martínez-Pinedoab

aInstitut für Kernphysik, Technische Universität Darmstadt,
D-64289 Darmstadt, Germany.

bGSI Helmholtzzentrum für Schwerionenforschung,
Planckstraße 1, D-64291 Darmstadt, Germany.

cDepartamento de Física Teórica, Universidad Autónoma de Madrid,
E-28049 Madrid, Spain.

E-mail:
aarz@theorie.ikp.physik.tu-darmstadt.de,
tomas.rodriguez@uam.es,
gabriel.martinez@physik.tu-darmstadt.de.

We employ the approach of Hartree-Fock-Bogolyubov nuclear theory with the effective Gogny
interaction in D1S parametrization to perform a large–scale calculation of nuclear masses from
proton–drip to neutron–drip line for even–even nuclei. We compare our results to the experimen-
tally known masses listed in 2012 Atomic Mass Evaluation compilation [21, 22], as well as to a
previously published AMEDEE database [23, 24, 25]. Owing to lack of convergence in a trun-
cated working basis, we employ and benchmark one of the recently proposed energy correction
techniques [27, 28] to extrapolate our results to the limit of an infinite model space.
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1. Introduction.

Although it is well-established that almost half of the heavy elements are produced by the rapid
neutron-capture process, the quest to identify the actual astrophysical site for this nucleosynthesis
scenario is still ongoing [1, 2, 3]. Regardless of the proposed site, all of the currently developing r-
process models require nuclear physics input for a large number of nuclei that have extreme neutron
excess and stretch up to the limits of the nuclear chart. Such nuclei lie far beyond capabilities of
experimental facilities in any foreseeable future, and hence performing r-process simulations one
has to almost entirely rely on theoretical predictions. Since masses determine thresholds of all
nuclear reactions, the calculated final r-process elemental abundances of any astrophysical model
are very sensitive [4, 5] to the employed nuclear mass tables, e.g. FRDM [6], WS [7], DZ [8].

Self-consistent mean-field theories based on Hartree-Fock-Bogolyubov (HFB) variational ap-
proach with energy density functionals (EDF) were actively developing in the recent decades and
have proven successful in systematic study of low energy nuclear structure [9, 10, 11]. In particular,
the recent HFB–based mass models are now found to be on a similar accuracy level in describing
experimental masses as the more phenomenological approaches [12, 13]. However, besides the
known issues of missing beyond-mean-field correlations [13, 14, 15, 24] and the so-called odd–
even effects [16, 17], there are also purely numerical problems, as an incomplete convergence of
observables in practical computations that can lead to numerical noise in form of artificial jumps
in the calculated binding and neutron-separation energies. In what follows, we discuss the issue of
insufficient convergence of practical HFB calculations in more detail.

2. Large–Scale Calculation.
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Figure 1: HFB calculations of ground state
binding energies of 16O as a function of SHO
basis length parameter b for different basis
dimensions NOS = 11, ...,21 (colored labels).
Dashed lines to guide the eye.

In current EDF implementations the N-body
wavefunctions are usually expanded in a spherical
harmonic oscillator (SHO) working basis that is de-
fined by the total number of major oscillator shells
NOS, and their intrinsic length parameter b [18]. Due
to variational nature of HFB approach, the best ap-
proximation of the ground state binding energy EHFB

is given by [19]

EHFB = min{E(NOS,b)}, (2.1)

where E(NOS,b) is the binding energy (BE) com-
puted in basis with parameters NOS and b. How-
ever, the binding energies (BEs) should ideally be
independent of the chosen basis parameters. Fig. 1
shows the calculated ground-state BEs of 16O for
bases NOS = 11, ...,21 that are plotted against vari-
ous oscillator lengths b. One sees that going from
NOS = 11 to NOS = 13, or from NOS = 13 to NOS = 15
yields noticeably deeper minima of BEs. Yet given a
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Figure 2: Energy differences between AME12 compilation and theoretical masses according to calculations
performed: (a) in this work, and (b) published results in Ref. [25]; (c) comparison of Shell Effects, and (d)
two-neutron separation energies of cadmium isotopic chain.

sufficiently large basis, the binding energies are largely insensitive to the parameters of the basis
NOS and b. We can thus state, that in this case, the results are virtually converged to the true HFB–
energy, thereafter to be referred to as E∞. However, due to the limited computational resources and
an improper asymptotic behavior of oscillator wave functions at long distances, this ideal is often
hard to achieve in practice for heavier and/or neutron-rich isotopes. This is particularly the case for
nuclei close to the drip lines, where the BEs are not fully converged in the largest basis used in this
survey (NOS = 19).

A global drip-to-drip line calculation of nuclear masses with finite–range Gogny D1S inter-
action [20] is computationally an intensive and challenging task. In spite of narrowing down the
scope of this study to the set of even-even isotopes, the full list of such nuclei 8 ≤ Z ≤ 134 in-
cludes 2180 entries. Allowing only axial deformations, up to 100 independent calculations had to
be carried out for every nucleus in order to ensure a bettermost convergence of the final ground
state energy. The results are presented on Fig. 2 (a), where the difference between the experimental
binding energies of 2012 Atomic Mass Evaluation (AME12) [21, 22] and current calculations are
plotted as a function of mass number A. For comparison, Fig. 2 (b) shows a similar plot, but for
the computed masses listed in previously published AMEDEE database [23, 24, 25]. The common
oscillating pattern is well-seen for both surveys, with the maxima appearing at the neutron magic
numbers (A ≈ 100,150,220), where the estimates of the theoretical approach are overbound. An-
other troublesome trend for D1S parametrization appears in the region of the heaviest nuclei. The
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plotted difference for those neutron–rich isotopes greatly bends downwards, meaning that theo-
retical results are much underbound in this mass region. Such tendency is due to the fact the
the neutron matter equation of state was not taken into account in the fit of the parameters of the
Gogny D1S interaction, whereas newer parametrizations, such as D1N [26] and D1M [13], resolve
this deficiency. When compared to the previously published databases [23, 24, 25], our results are
better converged by an average of 1.47 MeV, with the largest improvements in the regions between
the neutron-shell closures in mass regions A ∼ 130 and A ∼ 180. That is also evident from the
Fig. 2 (c) showing a comparison of the residual Shell Effects1 for cadmium isotopic chain. The fact
of a better convergence is also reflected in the observation that, in general, our calculations yield
much smoother mass curves than the AMEDEE results, Fig. 2 (a, b). This, in turn, also produces
smoother curves of the two-neutron separation energies2 without numerical noise in form of abrupt
artificial jumps present in the AMEDEE calculations. This can be seen, for example, in Fig. 2
(d), where the computed cadmium two-neutron separation energies are compared. We can also no-
tice that, despite the still unconverged results for the masses, the extracted two-neutron separations
energies are found to be virtually converged, which can be seen from the overlap of S2n values cal-
culated in NOS = 19 and NOS = 21 bases, Fig. 2 (d). As for the root-mean-square (rms) deviations, a
comparison of the 594 even–even masses listed in AME12 compilation with this calculation yields
an rms error of 3.5 MeV, whereas the AMEDEE database has a value of 4.6 MeV.

3. Extrapolation to infinite working basis.

The evident lack of convergence in practical HFB calculations prompts us to search for a
systematic and reliable method to extrapolate the results obtained in a truncated oscillator space
to the limit of an infinite basis. In this section we address the extrapolation scheme for ground-
state energies first proposed by J. R. Furnstahl, G. Hagen, and T. Papenbrock [27]. A refined
extrapolation method (referred to as L2-Extrapolation) can be found in Ref. [28]. Despite the
apparent success of L2-Extrapolation in connection to couple-cluster calculations of 6He and 16O
nuclei, the proposed extrapolation scheme has not yet been put to a systematic test in the neutron-
rich extremes of heavier nuclear systems. In this section we briefly present the extrapolation method
on an example of 16O and then discuss its applicability to the cases of heavier isotopic chains.

L2-Extrapolation. For a chosen single-particle basis of SHO functions, there are two momentum
cutoffs intrinsic to the finite model space itself. One of the cutoffs is associated with the energy of
the highest SHO level, or with the maximum momentum a particle in such a basis can reach, called
the UV-momentum, ΛUV ≡

√
2(N +3/2) · h̄/b. Preferably one has to choose the basis parameters

in such a way that the highest momentum scale λ of the employed interaction is smaller than the
maximum momentum in the working basis, i.e. λ < ΛUV . The second cutoff corresponds to the
maximum radial extent L of the finite oscillator space, which, if possible, should be chosen to be
greater than the corresponding radius of the nucleus R, so that one can fully encompass the many-
body wave function in the coordinate space. A previous set of empirical tests for some simpler

1Shell Effects are defined as the difference between the binding energy predicted by the liquid-drop model (LDM)
and the computed HFB–energy, i.e. S.E.= ELDM(Z,N)−EHFB(Z,N).

2two-neutron separation energies S2n are defined as S2n(Z,N) = EHFB(Z,N−2)−EHFB(Z,N).
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Figure 3: (a) calculated HFB energies in SHO bases with NOS = 11,...,21 as function of L2. Filled symbols
indicate BEs having ΛUV > 750 MeV/c, inset shows E∞ values for different extrapolations; (b) BEs calcu-
lated in NOS = 13 basis and the corresponding fits (solid lines); (c) residuals defined as dE =E(L2)−EL(L2);
(d) the corresponding extrapolations. Red line shows the converged result.

potentials, supported by theoretical motivation [28], revealed an evident preference in setting the
box size of the basis to L = L2 ≡

√
2(N +3/2+2) ·b.

However, in practice, satisfying both conditions of having λ < ΛUV and R < L2 does not
guarantee converged results, because the momentum cutoff λ is usually not sharp, and the nuclear
wave function extends beyond the nuclear radius R. Nevertheless, the effective nuclear interactions
usually exhibit a Gaussian falloff in momentum space, whereas the nuclear wave function only
falls off exponentially in coordinate space [29]. Thus, once λ < ΛUV holds, the UV convergence in
momentum space will be rapid, and the lack of convergence is primarily due to the slower falloff
in coordinate space. In the limit of UV-converged calculations, we can implement the following
IR-corrections of the form [28]

EL(L2) = ∆EL(L2)+E∞ = Bexp(c ·L2)+E∞, (3.1)

where energy correction ∆EL is a function of the effective radial extent L2, while B, c and E∞ are
the fit parameters.

In order to apply the IR-corrections, we must first separate out the UV–converged results.
This is achieved by selecting only those calculations for which UV–cutoff was sufficiently large,
e.g. ΛUV > 750 MeV/c [30]. If we now plot the selected HFB energies as a function of the
effective radial extent L2 (Fig. 3 (a), filled symbols), we find that all of them almost perfectly fall
on an exponential curve, consistent with the theoretical predictions for UV–converged results. The
observed bend upwards of BEs for larger L2 (Fig. 3 (a), hollow symbols) is due to insufficient UV–
convergence. Those calculations are excluded from the fit. The curves on Fig. 3 (a) represent the
fits to the HFB results from different combinations of basis dimensions, whereas the inset shows
the corresponding extrapolated values, E∞.

Of course, a reliable extrapolation should also be independent of the set of UV–converged
BEs used in the fit. We verify that it is indeed the case for 16O by fitting to different sets of BEs
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Figure 4: Results of L2-Extrapolation for nuclei in cadmium, tin, and tellurium isotopic chains as the
function of neutron number. The symbols indicate the difference between EHFB results in NOS = 21 basis and
extrapolated E∞–values for each nuclei obtained from sets of HFB calculations with model spaces truncated
at NOS = 17 and NOS = 19, separately. The momentum-threshold has been set to Λthr = 750 MeV/c. The
associated errorbars represent the spread in corresponding E∞–values by varying the threshold-parameter in
the interval 700 MeV/c < Λthr < 900 MeV/c.

calculations, defined by the choice of a threshold value Λthr, which we here choose as ΛUV >

Λthr = 850,950,1050 MeV/c. Moreover, in order to imitate a typical situation (common to heavy
and loosely bound nuclear systems) of having access to an insufficiently large working basis for
convergence, we limit ourselves to a SHO basis with NOS = 13. The results of this benchmark
can be seen on Fig. 3 (b), where fits for different threshold values are provided by the colored
dashed lines. All HFB points are found to be on an exponential curve and the quality of exponential
convergence pattern is particularly well seen on Fig. 3 (c). All fits yield corresponding E∞ estimates
with narrow spread falling very close to the converged energy value, cf. Fig. 3 (d), indicating a
good stability of the method. Having introduced the tools of L2-Extrapolation and benchmarked
its performance on the example of 16O, we are now in position to systematically test the proposed
scheme on a set of heavier nuclei.

Cadmium, tin, and tellurium. Following the discussion in the previous section, we define a
ideal extrapolation to posses the following properties: (i) independence of the chosen threshold
value Λthr that define the set of BEs used in the fits according to criteria ΛUV > Λthr, as long
as the choice ensures UV–convergence; (ii) insensitivity to the basis dimensionality in which the
BEs for the fit were obtained (e.g. the E∞–values are independent of whether we pick only the
NOS = 17 calculations, or only NOS = 19 ones, or a mixture thereof); (iii) finally, given that the
fully converged value of BE is unknown, extrapolations should be able to at least reproduce the
bettermost converged BE calculation at hand, or yield E∞–estimates that are deeper than that.

In what follows, we test the performance of L2-Extrapolation at the most relevant parts of nu-
clear chart (i.e. heavy and neutron-rich nuclei) in accordance to the robustness criteria established
above. In particular, we systematically apply the extrapolation scheme to the isotopic chains of
cadmium, tin, and tellurium up to the neutron-drip line. Fig. 4 shows the extrapolation results for
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each isotope of these chains for ΛUV > Λthr = 750 MeV/c obtained from sets of HFB calculations
performed in NOS = 17 basis, and separately in NOS = 19 basis, see caption. The error bars rep-
resent the spread in extrapolated values from varying the momentum–threshold in the following
interval: 700 MeV/c< Λthr <900 MeV/c. Although we do not directly associate this spread in
E∞–values with an error estimate of the extrapolation procedure, it is, nevertheless, representative
of the robustness of the method. Moreover, as a reliable extrapolation should be independent from
whether we choose NOS = 17 or NOS = 19 calculations for the fit, thus one should rather consider
the accumulative spread coming from both sets of data.

As one can see for all the considered isotopic chains, the most robust extrapolations are ob-
tained for isotopes in the direct vicinity to the stability region. However, in this region the extrap-
olations are least relevant due to larger degree of convergence of HFB calculations in comparison
to neutron–rich isotopes. As one moves away from the stable isotopes towards the neutron-drip
line, we observe an increasing divergency from the theoretically predicted exponential conver-
gence patterns of the BEs, which, in turn, leads to significant deterioration in performance of the
extrapolation. In particular, the discrepancy of extrapolations from NOS = 17 and NOS = 19 values
(with Λthr = 750 MeV/c) reach easily up to 5–8 MeV. Besides that, varying Λthr for neutron–rich
nuclei has a much greater impact on the estimated E∞ values (spanning energies of 10− 15 MeV
for A∼ 115). Finally, we also notice that the IR–corrections can no longer even reproduce the most
converged HFB–calculations at hand, let alone yield deeper binding energy than BEs computed in
NOS = 21 basis for all the chains’ nuclei in the neutron–rich region.

4. Summary and Discussion.

We have performed a large–scale Gogny–D1S calculation of ground state binding energies and
shown that a better convergence treatment has a perceptible impact on the nuclear masses. In partic-
ular, we have achieved a reduction of the rms deviations with the 594 experimental masses [21, 22]
from previously obtained 4.6 MeV [25] to 3.5 MeV. Numerical noise due to lack of convergence
is removed, resulting in smoother curves of the total binding energy difference along each isotopic
chain, as well as the corresponding two-neutron separation energies.

Due to insufficient convergence of nuclear masses we have implemented a recently proposed
L2-Extrapolation scheme [27, 28] and showed its nearly perfect performance for a playground case
of 16O. However, a systematic benchmark of L2-Extrapolation for the whole set of nuclei from
cadmium, tin, and tellurium isotopic chain revealed some limitations of the proposed scheme. The
evident failure of the L2-Extrapolation to provide reliable results for the neutron-rich nuclei of
these chains has been supported by the similar findings for magnesium, silicon, sulphur, argon, and
calcium chains [30]. Based on our findings here and in Ref. [30], the conclusion that we can draw in
regard to the proposed L2-Extrapolation, at least in conformity with HFB calculations, is therefore
that the investigated method is applicable with some reliability only in the regions of well-bound
nuclei of light to medium-mass isotopic chains. These restrictions of the proposed IR–corrections
renders these methods to be of limited applications in astrophysical calculations, as they do not
provide reliable estimations at required precision level for heavy nuclei in vicinity of the neutron-
drip line. Second-order IR–corrections [28] may perform better in these regions of loosely-bound
nuclei. A systematic study of such corrections will be presented in a future work [30].
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