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At finite temperature, very limited information exists on nuclear level density and thermodynamic
properties for such nuclei. So, one proposes in the present work to study the phenomenon of
pairing phase transition, by evaluating the heat capacity, in the case of Tin isotopes. So, as a
first step, our study will include the ordinary Sn isotopes such as 116 ≤ A ≤ 119, it will then be
extended to the neutron-rich nuclei such as 126 ≤ A ≤ 129. Theoretically, we use the modified
Lipkin-Nogami method (MLN) to eliminate the quantal and statistical fluctuations inherent in
the FTBCS approach. The obtained results are compared to the conventional FTBCS results and
to the MBCS predictions as well as to the experimental data when available. The inclusion of
quantal and statistical fluctuations induces S-shape in the heat capacity curves, which is in a good
agreement with experimental data.
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1. Introduction

Properties of the nuclei at extreme conditions are important in various astrophysical scenarios
such as in late stage of a supernova collapse and explosion. During this phenomenon, neutron-rich
hot heavy nuclei can be produced. So, the study of properties of these exotic nuclei is essential
for understanding processes in nuclear astrophysics. The fact that these nuclei present an important
N/Z ratio induces a fundamental change either in the nuclear density or in the effective interactions.
At finite temperature, very limited information exists on nuclear level density and thermodynamic
properties particularly for such nuclei. In the present paper, one proposes to study the phenomenon
of pairing phase transition, by studying the heat capacity, in the case of Sn neutron-rich isotopes
such as 66 ≤ N ≤ 79 including even-even and even-odd isotopes.
The study of pairing phase transitions in the hot nucleus presents actually a real challenge. This
phenomenon was well described by the FTBCS approach [1]. However, this approach neglect of the
quantal and the statistical fluctuations in the mean field approximations. The quantal fluctuations
arise from the fact that the BCS state is not eigen state of the particles number operator. The
elimination of this kind of fluctuations can be done using the particle number projection techniques.
The Lipkin-Nogami (LN) method is simple and numerically powerful to use and has thus become
the standard method for restoring the particle number symmetry.
On the other hand, the BCS theory at finite temperature (FTBCS) violates the unitary relation of the
particle-density matrix, inducing statistical fluctuations, making the FTBCS results invalid at high
temperatures. In recent years, many methods have been introduced to treat statistical fluctuations,
principally to explain the persistence of the pairing beyond the critical temperature provided by
the FTBCS method, and "S" shape in heat capacity was detected experimentally [2]−[4]. So,
in the present work, one proposes to use the modified Lipkin-Nogami method (MLN) [5, 6] to
eliminate the quantal and statistical fluctuations inherent in the FTBCS approach. The method is
applied to evaluation of the heat capacity. The obtained results are compared to MBCS [7] and
FTBCS predictions as well as to the experimental data when available. The paper is organized as
follows: the formalism is presented in section 2. Numerical results are discussed in section 3. Main
conclusions are summarized in the same section.

2. Formalism

In the second quantization, the Hamiltonian that describes a system of N = 2P particles, where
P is pairs of paired particles, is given by:

Ĥ = ∑
ν>0

εν

(
a†

ν aν +a†
ν̃ aν̃

)
− G ∑

ν µ>0
a†

ν a†
ν̃ aµ̃ aµ , (2.1)

where a†
ν and aν respectively represent the creation and annihilation operators of the state | ν⟩, of

energy εν ; and a†
ν̃ and aν̃ those of the state | ν̃⟩, which is the time reverse of | ν⟩ and has the same

energy. G is the pairing strength and assumed to be constant.
Let us recall, that in the case of the FTBCS approach, the use of the canonical Bogoliubov trans-
formation from the particle operators a†

ν and aν to the quasi-particle ones α†
ν and αν :

a†
ν = uνα†

ν + vναν̃
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aν̃ = uναν̃ − vνα†
ν (2.2)

allows one to obtain the FTBCS gap equations in the form [1]:

∆ = G ∑
ν≻0

uνvν (1−2ην) (2.3)

N = 2 ∑
ν≻0

[
v2

ν +(1−2v2
ν)ην

]
(2.4)

where ην is the quasi-particle occupation number given by the Fermi-Dirac distributionην =
1

1+exp(βEν )

and Eν =
√

(εν −λ )2 +∆2

At finite temperature as it has been shown in ref [8] , one has:

Tr
(
R−R2)= 2 ∑

ν≻0
ην (1−ην)≡ 2(δN)2 ̸= 0 (2.5)

where (δN) is a quasi-particle-number fluctuation. As a consequence, the FTBCS theory violates
the unitary relation for the generalized particle-density matrix R, which requires R2 = R.
To overcome this defect, a secondary Bogoliubov transformation was introduced:

ᾱ†
ν =

√
1−ηνα†

ν +
√

ηναν̃

ᾱν̃ =
√

1−ηναν̃ −
√

ηνα†
ν (2.6)

this transformation connects between the usual quasiparticle (QP) operators α†
ν and αν and the

modified quasiparticle operators (MQP) ᾱ†
ν and ᾱν . Using the transformations (2.2) and (2.6), one

has:

a†
ν = ūν ᾱ†

ν + v̄ν ᾱν̃

aν̃ = ūν ᾱν̃ − v̄ν ᾱ†
ν (2.7)

where the variational parameters ūν and v̄ν read:

ūν =
√

1−ηνuν +
√

ηνvν

v̄ν =
√

1−ηνvν −
√

ηνuν (2.8)

that allows to take into account the statistical fluctuations, and define a modified gap equations:

∆ = G ∑
ν≻0

⟨aν̃aν⟩= G ∑
ν≻0

(
uνvν (1−2ην)− (u2

ν − v2
ν)δην

)
(2.9)

N = 2 ∑
ν≻0

⟨
a†

νaν
⟩
= 2 ∑

ν≻0

(
v2

ν +(u2
ν − v2

ν)ην −2uνvνδην
)

(2.10)

where δην =
√

ην(1−ην) is a quasiparticle fluctuation number on the ν th orbital.

It is worth noticing here that the modified quasiparticle energy Eν =

√(
εν −λ

)2
+∆2 replaces

the quasiparticle energy Eν in the expression of the quasiparticle-occupation number ην .
The Modified BCS approach (MBCS) allows one to establish the gap equations in a simple way.
However, it neglects the fluctuations of the particle number. This defect may be eliminated using the
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Modified Lipkin-Nogami method (MLN). That consist on introduction of the uν and vν coefficients
normalized by the standard Lipkin Nogami, and inject them in the MBCS gap equations, such as:

u2
ν

v2
ν

}
=

1
2

{
1± εν −λ +(4λ2 −G)v2

ν√
(εν −λ −Gv2

ν +4λ2v2
ν)

2 + ∆̄2

}
(2.11)

The usual LN λ2 coefficient then becomes:

λ2 =
G
4

∑
ν≻0

ū3
ν v̄ν ∑

ν≻0
ūν v̄3

ν − ∑
ν>0

ū4
ν v̄4

ν

( ∑
ν≻0

ū2
ν v̄2

ν)
2 − ∑

ν≻0
ū4

ν v̄4
ν

(2.12)

The quasi-particle occupation number is defined by ην = 1
1+exp(β Ēν )

where the modified quasi-

particle energy Ēν =
√
(εν −λ −Gv̄2

ν +4λ2v̄2
ν)

2 + ∆̄2

2.1 Heat capacity

The heat capacity study informs on the nature and trends in the system, and shows any phase
transitions that can occur with increasing the temperature.
The heat capacity of even-even isotopes is defined as C = dEMLN

dT , where EMNL is the Modified
Lipkin-Nogami internal energy, it is given by:

EMLN = 2 ∑
ν≻0

(εν −Gv̄2
ν +4λ2v̄2

ν)v̄
2
ν −

∆̄2

G
−4λ2 ∑

ν≻0
ū2

ν v̄2
ν (2.13)

Concerning the even-odd isotopes, one uses the entropy definition [9]:

Seven−odd = Seven−even
1+nqp

nqp
(2.14)

where nqp = 2∑ν≻0 ην and Seven−even = 2∑ν≻0

(
ln(1+ exp(−βEν))+

βEν
1+exp(−βEν )

)
The heat capacity is thus deduced by: C = T Seven−odd

dT

3. Numerical results and discussion

The MLN method was applied to the calculation of heat capacity of the Tin ordinary isotopes.
We used the single-particles and eigen-states of a deformed Woods-Saxon mean-field. We con-
sidered a maximum number of shells Nmax = 12. The study will include the ordinary isotopes, it
will then be extended to the neutron-rich nuclei. In order to compare the theoretical predictions to
the experimental data, we used the values of the experimental level density ρ(En) to determine the
partition function in the canonical ensemble, using the following expression [10]:

Z(T ) = ∑
n≻0

ρ(En)exp
(
−En

T

)
(3.1)

where En is the excitation energy. The sum must be infinite, but as the level density is obtained for
maximum excitation energy of 9MeV . For energy values greater than 9MeV , the level density is

4
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Figure 1: Variation of the heat capacity as a function of temperature in the case of Tin ordinary isotopes
116 ≤ A ≤ 119

extrapolated using the formula of "Back-Shifted Fermi gas" model. The calculation of total energy
and heat capacity is done by the following relations:

E(T ) =
∑n≻0 Enρ(En)exp

(
−En

T

)
Z(T )

(3.2)

C = =
dE(T )

dT
(3.3)

In a first step, we have evaluated the heat capacity as a function of temperature in the case of
ordinary nuclei such as 116 ≤ A ≤ 119. The MLN results are reported in figure 1. We have also
plotted in the same figure, the experimental data as well as the theoretical predictions of FTBCS
and MBCS approaches. One notices:

• The FTBCS results present peaks signatures of sharp phase transition.

• The heat capacity curves calculated within MBCS and MLN methods present S shape sim-
ilar to experimental calculation. It appears thus the importance of quantal and statistical
fluctuations.

• At high temperatures the FTBCS method reproduces better experimental values.

• We also note that the MLN results are in better agreement with the experimental data as
the neutron number increases. That means that quantal fluctuations depend on the neutron
number.

As a second step, one reports in figure 2 the predictions of heat capacity for neutron-rich isotopes
such as 126 ≤ A ≤ 129. one may note from the figure:
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Figure 2: Variation of the heat capacity as a function of temperature in the case of Tin neutron-rich isotopes
126 ≤ A ≤ 129

• A sharp phase transition appears in the case of FTBCS method.

• A S shape phase transition within MBCS and MLN methods. The S shape clearly appears
when MLN method is used. Moreover, it is pronounced when neutron number increases
specially near the neutron shell closure N = 82. In this region, the quantal fluctuations play
an important role.

• The three methods converge at high temperatures.
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